Browsing by Author "Enting, I"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemLow atmospheric CO2 levels during the Little Ice Age due to cooling-induced terrestrial uptake(Springer Nature, 2016-07-25) Rubino, M; Etheridge, DM; Trudinger, CM; Allison, CE; Rayner, PJ; Enting, I; Mulvaney, R; Steele, LP; Langenfelds, RL; Sturges, WT; Curran, MAJ; Smith, AMLow atmospheric carbon dioxide (CO2) concentration1 during the Little Ice Age has been used to derive the global carbon cycle sensitivity to temperature2. Recent evidence3 confirms earlier indications4 that the low CO2 was caused by increased terrestrial carbon storage. It remains unknown whether the terrestrial biosphere responded to temperature variations, or there was vegetation re-growth on abandoned farmland5. Here we present a global numerical simulation of atmospheric carbonyl sulfide concentrations in the pre-industrial period. Carbonyl sulfide concentration is linked to changes in gross primary production6 and shows a positive anomaly7 during the Little Ice Age. We show that a decrease in gross primary production and a larger decrease in ecosystem respiration is the most likely explanation for the decrease in atmospheric CO2 and increase in atmospheric carbonyl sulfide concentrations. Therefore, temperature change, not vegetation re-growth, was the main cause of the increased terrestrial carbon storage. We address the inconsistency between ice-core CO2 records from different sites8 measuring CO2 and δ13CO2 in ice from Dronning Maud Land (Antarctica). Our interpretation allows us to derive the temperature sensitivity of pre-industrial CO2 fluxes for the terrestrial biosphere (γL = −10 to −90 Pg C K−1), implying a positive climate feedback and providing a benchmark to reduce model uncertainties. © 2016, Nature Publishing Group.
- ItemTerrestrial uptake due to cooling responsible for low atmospheric CO2 during the Little Ice Age(Antarctic Climate and Ecosystems Cooperative Research Centre, 2016-03-07) Rubino, M; Etheridge, DM; Trudinger, CM; Allison, CE; Rayner, PJ; Enting, I; Mulvaney, R; Steele, LP; Langenfelds, RL; Sturges, WT; Curran, MAJ; Smith, AMModels of future carbon cycle-climate changes predict a large range in atmospheric CO2, mainly because of uncertainties in the response of the land carbon cycle to the future temperature increase. The Little Ice Age (LIA, 1500-1750 AD) CO2 decrease is the most significant pre-industrial atmospheric change over the last millennia and has been used to derive the climate sensitivity of the global carbon cycle (δ). While a recent study confirms that pre-industrial CO2 variations were caused by changes in land carbon stores, there are open questions about the size of the atmospheric LIA CO2 decrease reconstructed from ice cores, and about what caused the land to sequester CO2. To quantify the size of the LIA CO2 decrease, we have produced new CO2 measurements from DML ice, that support the DSS LIA CO2 decrease as a real atmospheric feature. To partition the contribution of ocean and land, we have measured the δ 13C-CO2, showing that the cause of the CO2 drop was uptake by the terrestrial biosphere. To identify whether the land uptake was caused by temperature, or by a decline in farming due to pandemics, we have simulated the effect of a temperature perturbation on atmospheric Carbonyl Sulfide (COS). In agreement with the previously published positive COS anomaly, our results indicate that Global Primary Productivity (GPP) decreased during the LIA, ruling out the early anthropogenic land use change hypothesis as the dominant cause of increased terrestrial carbon storage. This allows us to obtain a new, more coherent estimation of δ in the range -10/-60 Pg of C K-1.