Browsing by Author "Eilbeck, AB"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemFlexible process options for the immobilisation of residues and wastes containing plutonium(American Society of Mechanical Engineers (ASME), 2007-09-02) Stewart, MWA; Moricca, SA; Begg, BD; Day, RA; Scales, CR; Maddrell, ER; Eilbeck, ABResidues and waste streams containing plutonium present unique technical, safety, regulatory, security, and sociopolitical challenges. In the UK these streams range from lightly plutonium contaminated materials (PCM) through to residues resulting directly from Pu processing operations. In addition there are potentially stocks of Pu oxide powders whose future designation may be either a waste or an asset, due to their levels of contamination making their reuse uneconomic, or to changes in nuclear policy. While waste management routes exist for PCM, an immobilisation process is required for streams containing higher levels of Pu. Such a process is being developed by Nexia Solutions and ANSTO to treat and immobilise Pu waste and residues currently stored on the Sellafield site. The characteristics of these Pu waste streams are highly variable. The physical form of the Pu waste ranges from liquids, sludges, powders/granules, to solid components (e.g., test fuels), with the Pu present as an ion in solution, as a salt, metal, oxide or other compound. The chemistry of the Pu waste streams also varies considerably with a variety of impurities present in many waste streams. Furthermore, with fissile isotopes present, criticality is an issue during operations and in the store or repository. Safeguards and security concerns must be assessed and controlled. The process under development, by using a combination of tailored waste form chemistry combined with flexible process technology aims to develop a process line to handle a broad range of Pu waste streams. It aims to be capable of dealing with not only current arisings but those anticipated to arise as a result of future operations or policy changes.