Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  • Communities & Collections
  • All of ANSTO Publications Online
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Echlin, MP"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A novel multi-scale modelling approach for determining the bulk properties of difficult-to-characterise composites
    (Australian Institute of Physics, 2013-02-05) Mignone, PJ; Wang, M; Finlayson, TR; Echlin, MP; Mottura, A; Pollock, TM; Riley, DP; Franks, GV
    A multi-scale modelling approach is presented for determining the bulk properties of copper-infiltrated Tungsten (W-Cu). A three-dimensional (3D) data-set of the W-Cu microstructure was generated using a novel serial-sectioning instrument. The image data were then reconstructed into a 3D Finite Element (FE) mesh. This made it possible to determine the bulk properties of W-Cu by simulating a representative volume of the microstructure.
  • No Thumbnail Available
    Item
    Three-dimensional characterization of the permeability of W–Cu composites using a new “triBeam” technique
    (Elsevier, 2014-02) Echlin, MP; Mottura, A; Wang, M; Mignone, PJ; Riley, DP; Franks, GV; Pollock, TM
    Large three-dimensional microstructural datasets have been gathered for two W–Cu composites of 10 and 15 wt.% Cu using the TriBeam system via in situ femtosecond laser sectioning in a scanning electron microscope. Laser ablation was performed on W–Cu samples along a 90 ° edge, milling parallel with the imaging surface. Secondary electron images for 1000 two-dimensional slices were segmented into binary images representing Cu and W components using EM/MPM (expectation–maximization/maximization of the posterior marginals) image-processing algorithms. A statistically random volume sampling approach has been employed to evaluate the microstructural and property volume element sizes necessary for the assessment of volume fraction, surface-area to volume ratio and permeability, respectively. This approach also characterizes the mean values and variability in microstructure and properties for volume elements ranging from 10 μm to 160 μm on edge. The converged values of the volume fractions of Cu closely match experimental values measured by the Archimedes technique.© 2013 Acta Materialia Inc.

ANSTO Publications Online software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback