Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  • Communities & Collections
  • All of ANSTO Publications Online
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Eaves, S"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A data-model comparison on the glacial thinning history of Byrd Glacier, Antarctica
    (Australian Institute of Nuclear Science and Engineering, 2021-11-17) Stutz, J; Eaves, S; Moore, C; Wilcken, KM; Norton, K; Lowry, D
    Response of marine based sectors of the Antarctic Ice Sheet (AIS) to projected warming remains a significant uncertainty in sea level rise projections. The aim of this project is to provide understanding of past mechanisms and feedbacks of ice sheet change, and to reduce uncertainty in projections of future change. We extend the satellite record of ice sheet change by targeting strategic locations around the margins of the Ross Ice Shelf, which is responsible for buttressing large sectors of the marine-based West AIS. At these locations, glacial sediments deposited on nunataks adjacent to dynamic ice margins record the transient evolution of ice thickness throughout the Holocene period. Here, we focus on the Byrd Glacier, which drains 10% of the East AIS by area and contributes ~20% of the total mass of the Ross Ice Shelf. At Lonewolf Nunataks along the upper Byrd Glacier, our cosmogenic surface exposure ages constrain (i) past rates of ice thinning; (ii) total magnitudes of ice elevation change; and (iii) the absolute timing of ice discharge and thinning events in these sensitive regions. In this presentation, we will review the existing knowledge of Transantarctic Mountain outlet glaciers and present new data from our 2019-20 season along the upper Byrd Glaciers. Comparing our data to recent regional-scale ice sheet model simulations of the last deglaciation, we observe a distinct time lag between modelled thinning and our data-constrained thinning history. Our new data-model comparison will inform high-resolution, sector-scale numerical glacier model experiments, in which we seek to determine drivers of ice sheet thinning and retreat. © The Authors

ANSTO Publications Online software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback