Browsing by Author "Donne, SW"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemKinetics of the thermally-induced structural rearrangement of γ-MnO2(ACS Publications, 2014-09-17) Dose, WM; Sharma, N; Webster, NAS; Peterson, VK; Donne, SWThis work presents a temperature-dependent and time-resolved X-ray and neutron diffraction study of the thermally induced structural rearrangement of γ-MnO2. Here, we study electrochemically prepared γ-MnO2, the manganese dioxide phase used in the majority of battery applications, which we find to be ∼64% ramsdellite [a = 4.4351(6) Å, 9.486(2) Å, c = 2.8128(7) Å, and V = 118.33(3) Å3] and ∼36% pyrolusite [a = 4.718(3) Å, c = 2.795(2) Å, and V = 62.22(8) Å3]. Taking a deeper look at the kinetics of the structural rearrangement, we find two steps: a fast transition occurring within 4–8 min with a temperature-dependent ramsdellite to pyrolusite transformation (rate constant 0.11–0.74 min–1) and a slow transition over 4 h that densifies (with changes in unit cell and volume) the ramsdellite and pyrolusite phases to give structures that appear to be temperature-independent. This effectively shows that γ/β-MnO2 prepared in the range of 200–400 °C consists of temperature-independent structures of ramsdellite, unit cell a = 4.391(1) Å, b = 9.16(5) Å, c = 2.847(1) Å, and V = 114.5(6) Å3, and pyrolusite, unit cell a = 4.410(2) Å, c = 2.869(2) Å, and V = 55.79(4) Å3, with a temperature-dependent pyrolusite fraction between 0.45 and 0.77 and increasing with temperature. Therefore, we have linked the temperature and time of heat treatment to the structural evolution of γ-MnO2, which will aid the optimization of γ/β-MnO2 as used in Li-primary batteries. © 2014, American Chemical Society.
- ItemUsing in situ synchrotron x-ray diffraction to study lithium- and sodium-ion batteries: a case study with an unconventional battery electrode (Gd2TiO5)(Cambridge University Press, 2014-11-04) Pramudita, JC; Aughterson, RD; Dose, WM; Donne, SW; Brand, HEA; Sharma, NDesigning materials for application as electrodes in sodium-ion batteries may require the use of unconventional materials to realize acceptable reversible sodium insertion/extraction capabilities. To design new materials simple electrochemical methods need to be coupled with other techniques such as in situ x-ray diffraction (XRD) to correlate the influence of electrochemical performance on a parameter that can be modified, e.g., the crystal structure of the material. Here we use in situ synchrotron XRD data on Gd2TiO5-containing cells to show the minor changes in reflection positions during discharge/charge that illustrates minimal volume expansion and contraction due to insertion/extraction reactions. These small changes correlate to the Gd2TiO5 anode material in both lithium- and sodium-ion batteries showing reversible capacities of ∼45 and ∼23 mA h/g after 20 cycles, respectively. Analysis of sodium location in the crystal structure shows a preference for sodium in the smaller channels along the c axis direction during the first discharge before moving to the larger channels at the charged state. Therefore, in this work, in situ studies highlight minimal structural changes with respect to volume expansion during electrochemical cycling and illustrate where sodium ions locate within the Gd2TiO5 structure. © 2014 Materials Research Society