Browsing by Author "Dollé, F"
Now showing 1 - 10 of 10
Results Per Page
Sort Options
- ItemCerebral monoamine oxidase a inhibition in tobacco smokers confirmed with PET and [c-11]befloxatone(Lippincott, Williams & Wilkins, 2009-02) Leroy, C; Bragulat, V; Berlin, I; Grégoire, MC; Bottlaender, MA; Roumenov, D; Dollé, F; Bourgeois, S; Penttilae, J; Artiges, E; Martinot, JL; Trichard, CThe inhibition of cerebral monoamine oxidases (MAOs) by cigarette smoke components could participate to the tobacco addiction. However, the actual extent of this inhibition in vivo in smokers is still poorly known. We investigated cerebral MAO-A availability in 7 tobacco-dependent subjects and 6 healthy nonsmokers, using positron emission tomography (PET) and the MAO-A selective radioligand [11C]befloxatone. In comparison to nonsmokers, smokers showed a significant overall reduction of [11C]befloxatone binding potential (BP) in cortical areas (average reduction, -60%) and a similar trend in caudate and thalamus (-40%). Our findings confirm a widespread inhibition of cerebral MAO-A in smokers. This mechanism may contribute to tobacco addiction and for a possible mood-modulating effect of tobacco. © 2009, Lippincott, Williams & Wilkins
- ItemDecrease of nicotinic receptors in the nigrostriatal system in Parkinson's disease(Nature Publishing Group, 2009-09) Kas, A; Bottlaender, MA; Gallezot, JD; Vidailhet, M; Villafane, G; Grégoire, MC; Coulon, CM; Valette, H; Dollé, F; Ribeiro, MJ; Hantraye, P; Remy, PSmoking is associated with a lower incidence of Parkinson's disease (PD), which might be related to a neuroprotective action of nicotine. Postmortem studies have shown a decrease of cerebral nicotinic acetylcholine receptors (nAChRs) in PD. In this study, we evaluated the decrease of nAChRs in PD in vivo using positron emission tomography (PET), and we explored the relationship between nAChRs density and PD severity using both clinical scores and the measurement of striatal dopaminergic function. Thirteen nondemented patients with PD underwent two PET scans, one with 6-[18F]fluoro-3,4-dihydroxy-L-phenylalanine (6-[18F]fluoro-L-DOPA) to measure the dopaminergic function and another with 2-[18F]fluoro-3-[2(S)-2-azetidinylmethoxy]pyridine (2-[18F]fluoro-A-85380), a radiotracer with high affinity for the nAChRs. Distribution volumes (DVs) of 2-[18F]fluoro-A-85380 measured in the PD group were compared with those obtained from six nonsmoking healthy controls, with regions-of-interest and voxel-based approaches. Both analyses showed a significant (P <0.05) decrease of 2-[18F]fluoro-A-85380 DV in the striatum (−10%) and substantia nigra (−14.9%) in PD patients. Despite the wide range of PD stages, no correlation was found between DV and the clinical and PET markers of PD severity. © 2009, Nature Publishing Group.
- ItemIn vivo imaging of brain lesions with [11C]CLINME, a new PET radioligand of peripheral benzodiazepine receptors(John Wiley and Sons, 2007-08-06) Boutin, H; Chauveau, F; Thominiaux, C; Kuhnast, B; Grégoire, MC; Jan, S; Trebossen, R; Dollé, F; Tavitian, B; Mattner, F; Katsifis, AThe peripheral benzodiazepine receptor (PBR) is expressed by microglial cells in many neuropathologies involving neuroinflammation. PK11195, the reference compound for PBR, is used for positron emission tomography (PET) imaging but has a limited capacity to quantify PBR expression. Here we describe the new PBR ligand CLINME as an alternative to PK11195. In vitro and in vivo imaging properties of [11C]CLINME were studied in a rat model of local acute neuroinflammation, and compared with the reference compound [11C]PK11195, using autoradiography and PET imaging. Immunohistochemistry study was performed to validate the imaging data. [11C]CLINME exhibited a higher contrast between the PBR-expressing lesion site and the intact side of the same rat brain than [11C]PK11195 (2.14 ± 0.09 vs. 1.62 ± 0.05 fold increase, respectively). The difference was due to a lower uptake for [11C]CLINME than for [11C]PK11195 in the non-inflammatory part of the brain in which PBR was not expressed, while uptake levels in the lesion were similar for both tracers. Tracer localization correlated well with that of activated microglial cells, demonstrated by immunohistochemistry and PBR expression detected by autoradiography. Modeling using the simplified tissue reference model showed that R1 was similar for both ligands (R1 ∼ 1), with [11C]CLINME exhibiting a higher binding potential than [11C]PK11195 (1.07 ± 0.30 vs. 0.66 ± 0.15). The results show that [11C]CLINME performs better than [11C]PK11195 in this model. Further studies of this new compound should be carried out to better define its capacity to overcome the limitations of [11C]PK11195 for PBR PET imaging. © 2007 Wiley-Liss, Inc.
- ItemIn vivo imaging of neuroinflammation: a comparative study between [F-18]PBR111, [C-11]CLINME and [C-11]PK11195 in an acute rodent model(Springer, 2010-05-01) van Camp, N; Boisgard, R; Kuhnast, B; Thézé, B; Viel, T; Grégoire, MC; Chauveau, F; Boutin, H; Katsifis, A; Dollé, F; Tavitian, BThe key role of neuroinflammation in acute and chronic neurological disorders has stimulated the search for specific radiotracers targeting the peripheral benzodiazepine receptor (PBR)/18 kDa translocator protein (TSPO), a hallmark of neuroinflammation. Here we evaluate the new radiotracer for positron emission tomography (PET) [F-18]PBR111 in a rodent model of acute inflammation and compare it with [C-11]CLINME, an C-11-labelled tracer of the same chemical family, and with the isoquinolinic carboxamide [C-11]PK11195. We studied radiometabolites by HPLC, in vitro binding by autoradiography and in vivo brain kinetics as well as in vivo specificity of binding using PET imaging. We show that this radiotracer has a high in vitro specificity for PBR/TSPO versus central benzodiazepine receptors, as reflected by the drastic reduction of its binding to target tissue by addition of PK11195 or PBR111, while addition of flumazenil does not affect binding. Only intact [F-18]PBR111 is detected in brain up to 60 min after i.v. injection, and PET imaging shows an increased uptake in the lesion as compared to the contralateral side as early as 6 min after injection. Administration of an excess of PK11195 and PBR111, 20 min after [F-18]PBR111 administration, induces a rapid and complete displacement of [F-18]PBR111 binding from the lesion. Modelling of the PET data using the simplified reference tissue model showed increased binding potential (BP) in comparison to [C-11]PK11195. [F-18]PBR111 is a metabolically stable tracer with a high specific in vitro and in vivo binding to TSPO. In addition, considering the longer half-life of F-18 over C-11, these results support [F-18]PBR111 as a promising PET tracer of the PBR/TSPO for neuroinflammation imaging. © 2010, Springer.
- ItemIn vivo quantification of monoamine oxidase A in baboon brain: a PET study using [C-11]befloxatone and the multi-injection approach.(Nature Publishing Group, 2010-04-01) Bottlaender, MA; Valette, H; Delforge, J; Saba, W; Guenther, I; Curet, O; George, P; Dollé, F; Grégoire, MC[C-11]befloxatone is a high-affinity, reversible, and selective radioligand for the in vivo visualization of the monoamine oxidase A (MAO-A) binding sites using positron emission tomography (PET). The multi-injection approach was used to study in baboons the interactions between the MAO-A binding sites and [C-11] befloxatone. The model included four compartments and seven parameters. The arterial plasma concentration, corrected for metabolites, was used as input function. The experimental protocol-three injections of labeled and/or unlabeled befloxatone-allowed the evaluation of all the model parameters from a single PET experiment. In particular, the brain regional concentrations of the MAO-A binding sites (B-max(')) and the apparent in vivo befloxatone affinity (K-d) were estimated in vivo for the first time. A high binding site density was found in almost all the brain structures (170 +/- 39 and 194 +/- 26 pmol/mL in the frontal cortex and striata, respectively, n = 5). The cerebellum presented the lowest binding site density (66 +/- 13 pmol/mL). Apparent affinity was found to be similar in all structures (KdVR = 6.4 +/- 1.5 nmol/L). This study is the first PET-based estimation of the B-max of an enzyme. © 2010, Nature Publishing Group.
- ItemPositron emission tomography imaging demonstrates correlation between behavioral recovery and correction of dopamine neurotransmission after gene therapy.(Society for Neuroscience, 2009-02-04) Leriche, L; Bjorklund, T; Breysse, N; Besret, L; Grégoire, MC; Carlsson, T; Dollé, F; Mandel, RJ; Déglon, N; Hantraye, P; Kirik, DIn vivo gene transfer using viral vectors is an emerging therapy for neurodegenerative diseases with a clinical impact recently demonstrated in Parkinson's disease patients. Recombinant adeno-associated viral (rAAV) vectors, in particular, provide an excellent tool for long-term expression of therapeutic genes in the brain. Here we used the [11C]raclopride [(S)-(–)-3,5-dichloro-N-((1-ethyl-2-pyrrolidinyl)methyl)-2-hydroxy-6-methoxybenzamide] micro-positron emission tomography (PET) technique to demonstrate that delivery of the tyrosine hydroxylase (TH) and GTP cyclohydrolase 1 (GCH1) enzymes using an rAAV5 vector normalizes the increased [11C]raclopride binding in hemiparkinsonian rats. Importantly, we show in vivo by microPET imaging and postmortem by classical binding assays performed in the very same animals that the changes in [11C]raclopride after viral vector-based enzyme replacement therapy is attributable to a decrease in the affinity of the tracer binding to the D2 receptors, providing evidence for reconstitution of a functional pool of endogenous dopamine in the striatum. Moreover, the extent of the normalization in this non-invasive imaging measure was highly correlated with the functional recovery in motor behavior. The PET imaging protocol used in this study is fully adaptable to humans and thus can serve as an in vivo imaging technique to follow TH + GCH1 gene therapy in PD patients and provide an additional objective measure to a potential clinical trial using rAAV vectors to deliver L-3,4-dihydroxyphenylanaline in the brain. © 2009, Society for Neuroscience
- ItemQuantification of cerebral nicotinic acetylcholine receptors by PET using 2-[18F]fluoro-A-85380 and the multiinjection approach(Nature Publishing Group, 2008-01-01) Gallezot, JD; Bottlaender, MA; Delforge, J; Valette, H; Saba, W; Dollé, F; Coulon, CM; Ottaviani, MP; Hinnen, F; Syrota, A; Grégoire, MCThe multiinjection approach was used to study in vivo interactions between α4β2* nicotinic acetylcholine receptors and 2-[18F]fluoro-A-85380 in baboons. The ligand kinetics was modeled by the usual nonlinear compartment model composed of three compartments (arterial plasma, free and specifically bound ligand in tissue). Arterial blood samples were collected to generate a metabolite-corrected plasma input function. The experimental protocol, which consisted of three injections of labeled or unlabeled ligand, was aiming at identifying all parameters in one experiment. Various parameters, including B′max (the binding sites density) and KdVR (the apparent in vivo affinity of 2-[18F]fluoro-A-85380) could then be estimated in thalamus and in several receptor-poor regions. B′max estimate was 3.0±0.3 pmol/mL in thalamus, and ranged from 0.25 to 1.58 pmol/mL in extrathalamic regions. Although KdVR could be precisely estimated, the association and dissociation rate constants kon/VR and koff could not be identified separately. A second protocol was then used to estimate koff more precisely in the thalamus. Having estimated all model parameters, we performed simulations of 2-[18F]fluoro-A-85380 kinetics to test equilibrium hypotheses underlying simplified approaches. These showed that a pseudo-equilibrium is quickly reached between the free and bound compartments, a favorable situation to apply Logan graphical analysis. In contrast, the pseudo-equilibrium between the plasma and free compartments is only reached after several hours. The ratio of radioligand concentration in these two compartments then overestimates the true equilibrium value, an unfavorable situation to estimate distribution volumes from late images after a bolus injection. © 2008, Nature Publishing Group.
- ItemRadiosynthesis of 2-[6-chloro-2-(4-iodophenyl)imidazo [1,2-a]pyridin-3-yl]-N-ethyl-N-[C-11]methyl-acetamide, [C-11]CLINME, a novel radioligand for imaging the peripheral benzodiazepine receptors with PET(Wiley-Blackwell, 2007-03) Thominiaux, CJ; Mattner, F; Greguric, I; Boutin, H; Chauveau, F; Kuhnast, B; Grégoire, MC; Loc'h, C; Valette, H; Bottlaender, MA; Hantraye, P; Tavitian, B; Katsifis, A; Dollé, FRecently, a new 2-(iodophenyl)imidazo[1,2-a]pyridineacetamide series has been developed as iodine-123-labelled radioligands for imaging the peripheral benzodiazepine receptors using single photon emission tomography. Within this series, 2-[6-chloro-2-(4-iodophenyl)-imidazo[1,2-alpyridin-3-yl]-N-ethyl-N-methyl-acetamide (CLINME) was considered as an appropriate candidate for positron emission tomography imaging and was isotopically labelled with carbon-11 (T-1/2: 20.38 min) at the methylacetamide side chain from the corresponding nor-analogue using [C-11]methyl iodide and the following experimental conditions: (1) trapping at -10 degrees C of [C-11]methyl iodide in a 1/2 (v:v) mixture of DMSO/DMF (300 mu l) containing 0.7-1.0 mg of the precursor for labelling and 3-5 mg of powdered potassium hydroxide (excess); (2) heating the reaction mixture at 110 degrees C for 3 min under a nitrogen stream; (3) diluting the residue with 0.6 ml of the HPLC mobile phase; and (4) purification using semi-preparative HPLC (Zorbax(R) SB18, Hewlett Packard, 250 x 9.4 mm). Typically, starting from a 1.5Ci (55.5 GBq) [C-11]CO2 production batch, 120-150 mCi (4.44-5.55 GBq) of [C-11]CLINME were obtained (16-23% decay-corrected radiochemical yield, n = 12) within a total synthesis time of 24-27 min (Sep-pak(R)Plus-based formulation included). Specific radio-activities ranged from 0.9 to 2.7 Ci/mu mol (33.3-99.9 GBq/mu mol) at the end of radiosynthesis. © 2007, Wiley-Blackwell.
- ItemRadiosynthesis of F-18 PBR111, a selective radioligand for imaging the translocator protein (18 kDa) with PET(John Wiley and Sons, 2008-11-04) Dollé, F; Hinnen, F; Damont, A; Kuhnast, B; Fookes, CJR; Pham, TQ; Tavitian, B; Katsifis, APBR111 (2-(6-chloro-2-(4-(3-fluoro-propoxy)phenyl)imidazo[1,2-a]pyridin-3-yl)-N, N-diethylacetamide) is a novel, reported, high-affinity and selective ligand for the translocator protein (18 kDa). PBR111 has been labelled with fluorine-18 (half-life: 109.8 min) using our Zymate-XP robotic system. The process involves (A) a simple one-step to syloxy-for-fluorine nucleophilic aliphatic substitution (performed at 165 degrees C for 5 min in DMSO using K[18F]F-Kryptofix 222 and 6.8-7.6 μ mol of the corresponding tosylate as precursor for labelling) followed by (B) C-18 PrepSep cartridge pre-purification and(C) semi-preparative HPLC purification on a Waters Symmetry C-18. Up to 4.8 GBq (130 mCi) of [18F]PBR111 could be obtained with specific radioactivities ranging from 74 to 148 GBq/μ mol (2-4 Ci/μ mol) in 75-80 min (HPLC purification and SepPak-based formulation included), starting from a 37.0 GBq (1.0 Ci) [18F]fluoride batch. Overall non-decay-corrected isolated yields were 8-13% (13-21% decay-corrected). © 2008 John Wiley & Sons, Ltd.
- ItemRadiosynthesis, in vivo biological evaluation, and imaging of brain lesions with [123I]-CLINME, a new SPECT tracer for the translocator protein(Hindawi Publishing Corporation, 2015-06-25) Mattner, F; Quinlivan, M; Greguric, I; Pham, TQ; Liu, X; Jackson, TW; Berghofer, PJ; Fookes, CJR; Dikic, B; Grégoire, MC; Dollé, F; Katsifis, AThe high affinity translocator protein (TSPO) ligand 6-chloro-2-(4′-iodophenyl)-3-(N,N-methylethyl)imidazo[1,2-a]pyridine-3-acetamide (CLINME) was radiolabelled with iodine-123 and assessed for its sensitivity for the TSPO in rodents. Moreover neuroinflammatory changes on a unilateral excitotoxic lesion rat model were detected using SPECT imaging. [123I]-CLINME was prepared in 70–80% radiochemical yield. The uptake of [123I]-CLINME was evaluated in rats by biodistribution, competition, and metabolite studies. The unilateral excitotoxic lesion was performed by injection of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid unilaterally into the striatum. The striatum lesion was confirmed and correlated with TSPO expression in astrocytes and activated microglia by immunohistochemistry and autoradiography. In vivo studies with [123I]-CLINME indicated a biodistribution pattern consistent with TPSO distribution and the competition studies with PK11195 and Ro 5-4864 showed that [123I]-CLINME is selective for this site. The metabolite study showed that the extractable radioactivity was unchanged [123I]-CLINME in organs which expresses TSPO. SPECT/CT imaging on the unilateral excitotoxic lesion indicated that the mean ratio uptake in striatum (lesion : nonlesion) was 2.2. Moreover, TSPO changes observed by SPECT imaging were confirmed by immunofluorescence, immunochemistry, and autoradiography. These results indicated that [123I]-CLINME is a promising candidate for the quantification and visualization of TPSO expression in activated astroglia using SPECT. © 2015 F. Mattner et al.