Browsing by Author "David, K"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemApplication of the pore water stable isotope method and hydrogeological approaches to characterise a wetland system(Copernicus Publications, 2018-12-06) David, K; Timms, W; Hughes, CE; Crawford, J; McGeeney, DThree naturally intact wetland systems (swamps) were characterised based on sediment cores, analysis of surface water, swamp groundwater, regional groundwater and pore water stable isotopes. These swamps are classified as temperate highland peat swamps on sandstone (THPSS) and in Australia they are listed as threatened endangered ecological communities under state and federal legislation. This study applies the stable isotope direct vapour equilibration method in a wetland, aiming at quantification of the contributions of evaporation, rainfall and groundwater to swamp water balance. This technique potentially enables understanding of the depth of evaporative losses and the relative importance of groundwater flow within the swamp environment without the need for intrusive piezometer installation at multiple locations and depths. Additional advantages of the stable isotope direct vapour equilibration technique include detailed spatial and vertical depth profiles of δ18O and δ2H, with good accuracy comparable to other physical and chemical extraction methods. Depletion of δ18O and δ2H in pore water with increasing depth (to around 40–60 cm depth) was observed in two swamps but remained uniform with depth in the third swamp. Within the upper surficial zone, the measurements respond to seasonal trends and are subject to evaporation in the capillary zone. Below this depth the pore water δ18O and δ2H signature approaches that of regional groundwater, indicating lateral groundwater contribution. Significant differences were found in stable pore water isotope samples collected after the dry weather period compared to wet periods where recharge of depleted rainfall (with low δ18O and δ2H values) was apparent. The organic-rich soil in the upper 40 to 60 cm retains significant saturation following precipitation events and maintains moisture necessary for ecosystem functioning. An important finding for wetland and ecosystem response to changing swamp groundwater conditions (and potential ground movement) is that basal sands are observed to underlay these swamps, allowing relatively rapid drainage at the base of the swamp and lateral groundwater contribution. Based on the novel stable isotope direct vapour equilibration analysis of swamp sediment, our study identified the following important processes: rapid infiltration of rainfall to the water table with longer retention of moisture in the upper 40–60 cm and lateral groundwater flow contribution at the base. This study also found that evaporation estimated using the stable isotope direct vapour equilibration method is more realistic compared to reference evapotranspiration (ET). Importantly, if swamp discharge data were available in combination with pore water isotope profiles, an appropriate transpiration rate could be determined for these swamps. Based on the results, the groundwater contribution to the swamp is a significant and perhaps dominant component of the water balance. Our methods could complement other monitoring studies and numerical water balance models to improve prediction of the hydrological response of the swamp to changes in water conditions due to natural or anthropogenic influences. © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License.
- ItemThe benefits of a multidisciplinary team model for groundwater-surface water investigations, Thirlmere Lakes, NSW.(National Centre for Groundwater Research And Training, & Australian Chapter International Association Of Hydrogeologists, 2019-11-25) Cowley, KL; Cohen, TJ; Forbes, MS; Barber, E; Allenby, J; Andersen, MS; Anibas, C; Glamore, W; Chen, SY; Johnson, F; Timms, W; David, K; McMillan, T; Cendón, DI; Peterson, MA; Hughes, CE; Krogh, MThe Thirlmere Lakes Research Program (TLRP) is a four-year collaborative multidisciplinary program designed to gain a whole-of-system understanding of the hydro-dynamics of a complex lake environment. The program was established from concerns that proximal aquifer interference activities were factors in recent lake level declines. Five research teams were established to investigate five adjacent lakes set within an entrenched meander bend located south-west of Sydney. The project involved lithological, geochemical and geochronological analysis from lake beds and surrounding slopes to understand lake evolution and determine potential past lake-drying events. Further geological understanding of the lake area was obtained from resistivity imaging (RI), ground penetrating radar (GPR), and analysis of rock cores that were drilled from two deep bores adjacent the lakes. Development of water balance budgets involved fine-scale on-site meteorological measurements including on-site evapotranspiration monitoring, combined with high-resolution bathymetry from RTK GPS, LiDAR surveying and drone photogrammetry. Groundwater-surface water interactions were measured using lake-bed multilevel temperature and pressure arrays, hydraulic head measurements and fine-scale isotope, major ion and environmental tracer time-series analysis. Preliminary findings indicate that the five lakes have been separated for over ~100,000 years and that the lakes themselves contain sediment that is possibly up to 250,000 years old. Assessing the modern dynamics we show that current lake level declines during a period of low rainfall are largely evaporation dominated. One lake however appears to have greater water storage in adjacent sediments providing compensatory inflows. In a second lake, there are indications of localised connectivity with shallow (≤18m) groundwater, but no evidence of connectivity with deeper aquifers. Geological surveys indicate a clay layer 6-8 m below the lakes and spatial variations in both sediment and rock geology. The influence of these geological features, including structures projecting towards the lakes, on groundwater storage and flow is the focus of ongoing research as is temporal variability and lake interactions at different lake levels. The benefits of the multidisciplinary team model include refining the research targeting areas of uncertainty and to enhance and calibrate each team’s results. This approach will provide a comprehensive whole-of-system model of the evolution and hydro-dynamics of a complex lake system. © The Authors