Browsing by Author "Cutajar, DL"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemFrom imaging to dosimetry: GEANT4-based study on the application of medipix to neutron dosimetry(Elsevier, 2009-10-12) Othman, MAR; Marinaro, DG; Petasecca, M; Guatelli, S; Cutajar, DL; Lerch, MLF; Prokopovich, DA; Reinhard, MI; Uher, J; Jakubek, J; Pospisil, S; Rosenfeld, ABAn application of Medipix2 using a newly developed segmented multiple thickness polyethylene (PE) converter for fast neutron detection is presented. The system has the ability to provide an energy independent response for the dose equivalent for fast neutrons. The application of weighting factors to each defined thickness of PE allows for a flattening of the response of the detector system for dosimetry applications. Six PE converter segments were applied, and their thicknesses and weighting factors were optimised to obtain the required energy independent detector response. The study performed by means of GEANT4. Its suitability for neutron dosimetry was studied with respect to a previously published work. © 2013 Elsevier B.V.
- ItemMOSkin dosimetry for an ultra-high dose-rate, very high-energy electron irradiation environment at PEER(Frontiers, 2024-07-30) Cayley, J; Tan, YRE; Petasecca, M; Cutajar, DL; Breslin, T; Rosenfeld, AB; Lerch, MLFFLASH radiotherapy, which refers to the delivery of radiation at ultra-high dose-rates (UHDRs), has been demonstrated with various forms of radiation and is the subject of intense research and development recently, including the use of very high-energy electrons (VHEEs) to treat deep-seated tumors. Delivering FLASH radiotherapy in a clinical setting is expected to place high demands on real-time quality assurance and dosimetry systems. Furthermore, very high-energy electron research currently requires the transformation of existing non-medical accelerators into radiotherapy research environments. Accurate dosimetry is crucial for any such transformation. In this article, we assess the response of the MOSkin, developed by the Center for Medical Radiation Physics, which is designed for on-patient, real-time skin dose measurements during radiotherapy, and whether it exhibits dose-rate independence when exposed to 100 MeV electron beams at the Pulsed Energetic Electrons for Research (PEER) end-station. PEER utilizes the electron beam from a 100 MeV linear accelerator when it is not used as the injector for the ANSTO Australian Synchrotron. With the estimated pulse dose-rates ranging from (7.84±0.21)×105 Gy/s to (1.28±0.03)×107 Gy/s and an estimated peak bunch dose-rate of (2.55±0.06)×108 Gy/s, MOSkin measurements were verified against a scintillating screen to confirm that the MOSkin responds proportionally to the charge delivered and, therefore, exhibits dose-rate independence in this irradiation environment. © 2024 Cayley, Tan, Petasecca, Cutajar, Breslin, Rosenfeld and Lerch. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.