Browsing by Author "Cresswell, T"
Now showing 1 - 20 of 58
Results Per Page
Sort Options
- ItemApplication of nuclear techniques to environmental plastics research(Elsevier, 2018-12) Lanctôt, CM; Al-Sid-Cheikh, M; Catarino, AI; Cresswell, T; Danis, B; Karapanagioti, HK; Mincer, T; Oberhänsli, F; Swarzenski, PW; Tolosa, I; Metian, MPlastic pollution is ubiquitous in aquatic environments and its potential impacts to wildlife and humans present a growing global concern. Despite recent efforts in understanding environmental impacts associated with plastic pollution, considerable uncertainties still exist regarding the true risks of nano- and micro-sized plastics (<5 mm). The challenges faced in this field largely relate to the methodological and analytical limitations associated with studying plastic debris at low (environmentally relevant) concentrations. The present paper highlights how radiotracing techniques that are commonly applied to trace the fate and behaviour of chemicals and particles in various systems, can contribute towards addressing several important and outstanding questions in environmental plastic pollution research. Specifically, we discuss the use of radiolabeled microplastics and/or chemicals for 1) determining sorption/desorption kinetics of a range of contaminants to different types of plastics under varying conditions, 2) understanding the influence of microplastics on contaminant and nutrient bioaccumulation in aquatic organisms, and 3) assessing biokinetics, biodistribution, trophic transfer and potential biological impacts of microplastic at realistic concentrations. Radiotracer techniques are uniquely suited for this research because of their sensitivity, accuracy and capacity to measure relevant parameters over time. Obtaining precise and timely information on the fate of plastic particles and co-contaminants in wildlife has widespread applications towards effective monitoring programmes and environmental management strategies. © 2018 Elsevier Ltd
- ItemAquatic live animal radiotracing studies for ecotoxicological applications: addressing fundamental methodological deficiencies(Elsevier, 2017-11) Cresswell, T; Metian, M; Golding, LA; Wood, MDThe use of live animal gamma radioisotope tracer techniques in the field of ecotoxicology allows laboratory studies to accurately monitor contaminant biokinetics in real time for an individual organism. However, methods used in published studies for aquatic organisms are rarely described in sufficient detail to allow for study replication or an assessment of the errors associated with live animal radioanalysis to be identified. We evaluate the influence of some important methodological deficiencies through an overview of the literature on live aquatic animal radiotracer techniques and through the results obtained from our radiotracer studies on four aquatic invertebrate species. The main factors discussed are animal rinsing, radioanalysis and geometry corrections. We provide examples of three main techniques in live aquatic animal radiotracer studies to improve data quality control and demonstrate why each technique is crucial in interpreting the data from such studies. The animal rinsing technique is also relevant to non-radioisotope tracer studies, especially those involving nanoparticles. We present clear guidance on how to perform each technique and explain the importance of proper reporting of the validation of each technique for individual studies. In this paper we describe methods that are often used in lab-based radioecology studies but are rarely described in great detail. We hope that this paper will act as the basis for standard operating procedures for future radioecology studies to improve study replication and data quality control. © 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
- ItemAssessing the impacts of scale residues from offshore oil and gas decommissioning on marine organisms(CSIRO Publishing, 2021-07-02) Cresswell, T; Brown, S; Wong, HKY; Apte, SSuccessful decommissioning of offshore oil and gas infrastructure requires an effective and safe approach to assessing and managing chemical and radiological residues. Scale frequently accumulates on the interior surfaces of pipes and other structures and may persist long after extraction operations have ceased. Scale materials can contain a range of metal contaminants (including mercury), as well as naturally occurring radioactive materials. In newer or more accessible infrastructure, the scale is routinely removed, and becomes a waste product. The persistent nature of scale contaminants can result in a radiological dose to the organisms living on, or near an intact pipeline. Eventually, infrastructure corrosion following in situ decommissioning (abandonment) could lead to metal and radionuclide contaminants being accessible to the surrounding seafloor environment, where bioaccumulation and subsequent ecotoxicological effects from the chemical and radiological properties of the scale could occur. The paper describes a tiered approach to assess the ecological impacts of pipeline scale in order to assist operators with their plans for decommissioning offshore infrastructure, especially when considering ‘leave in place’ options. © CSIRO 2021
- ItemBioaccumulation and biodistribution of selenium in metamorphosing tadpoles(American Chemical Society, 2017-04-19) Lanctôt, CM; Cresswell, T; Callaghan, PD; Melvin, SDSelenium is an important macronutrient with a very narrow margin between essentiality and toxicity. Amphibians are hypothesized to be particularly sensitive due to the potential for metamorphosis-driven mobilization, which could transfer or concentrate contaminant burdens within specific organs. We explored the potential role of tissue degeneration and remodeling during anuran metamorphosis as a mechanism for altering tissue-specific Se burdens. Limnodynastes peronii tadpoles were exposed to dissolved 75Se (as selenite) for 7 days and depurated until completion of metamorphosis. Bioaccumulation and retention kinetics were assessed in whole tadpoles and excised tissues using gamma spectroscopy, and temporal changes in biodistribution were assessed using autoradiography. Tadpoles retained Se throughout metamorphosis, and partitioned the element predominantly within digestive and excretory tissues, including livers > mesonephros > guts > gallbladder. Importantly, our results demonstrate that Se biodistribution varies significantly throughout development. This is indicative of tissue transference, and particularly in tissues developing de novo after depuration. To the best of our knowledge, this is the first study demonstrating Se transference during metamorphic tissue remodelling. Further research is warranted to explore the fate and metabolism of Se (and other metal and metalloids) during anuran development and the implications of transference for influencing toxicity. © 2017 American Chemical Society
- ItemBioaccumulation and retention kinetics of cadmium in the freshwater decapod Macrobrachium australiense(Elsevier, 2014-03) Cresswell, T; Simpson, SL; Smith, REW; Nugegoda, D; Mazumder, D; Twining, JRThe potential sources and mechanisms of cadmium bioaccumulation by the native freshwater decapods Macrobrachium species in the waters of the highly turbid Strickland River in Papua New Guinea were examined using 109Cd-labelled water and food sources and the Australian species Macrobrachium australiense as a surrogate. Synthetic river water was spiked with environmentally relevant concentrations of cadmium and animals were exposed for 7 days with daily renewal of test solutions. Dietary assimilation of cadmium was assessed through pulse-chase experiments where prawns were fed separately 109Cd-labelled fine sediment, filamentous algae and carrion (represented by cephalothorax tissue of water-exposed prawns). M. australiense readily accumulated cadmium from the dissolved phase and the uptake rate increased linearly with increasing exposure concentration. A cadmium uptake rate constant of 0.10 ± 0.05 L/g/d was determined in synthetic river water. During depuration following exposure to dissolved cadmium, efflux rates were low (0.9 ± 5%/d) and were not dependent on exposure concentration. Assimilation efficiencies of dietary sources were comparable for sediment and algae (48–51%), but lower for carrion (28 ± 5%) and efflux rates were low (0.2–2.6%/d) demonstrating that cadmium was well retained by M. australiense. A biokinetic model of cadmium accumulation by M. australiense predicted that for exposures to environmentally relevant cadmium concentrations in the Strickland River, uptake from ingestion of fine sediment and carrion would be the predominant sources of cadmium to the organism. The model predicted the total dietary route would represent 70–80% of bioaccumulated cadmium © 2014, Elsevier B.V.
- ItemBioaccumulation kinetics and internal distribution of the fission products radiocaesium and radiostrontium in an estuarine crab(Elsevier, 2021-04-15) Cresswell, T; Prentice, E; Howell, NR; Callaghan, PD; Metian, M; Johansen, MPCrab has been designated by the ICRP as one of twelve reference/model organisms for understanding the impacts of radionuclide releases on the biosphere. However, radionuclide-crab interaction data are sparse compared with other reference organisms (e.g. deer, earthworm). This study used an estuarine crab (Paragrapsus laevis) to investigate the contribution of water, diet and sediment sources to radionuclide (134Cs and 85Sr) bioaccumulation kinetics using live-animal radiotracing. The distribution of each radionuclide within the crab tissues was determined using dissection, whole-body autoradiography and synchrotron X-ray Fluorescence Microscopy (XFM). When moulting occurred during exposure, it caused significant increases in 85Sr bioaccumulation and efflux of 134Cs under constant aqueous exposure. Dietary assimilation efficiencies were determined as 55 ± 1% for 134Cs and 49 ± 3% for 85Sr. 85Sr concentrated in gonads more than other organs, resulting in proportionally greater radiation dose to the reproductive organs and requires further investigation. 134Cs was found in most soft tissues and was closely associated with S and K. Biodynamic modelling suggested that diet accounted for 90–97% of whole-body 137Cs, while water accounted for 59–81% of 90Sr. Our new data on crab, as a representative invertebrate, improves understanding of the impacts of planned or accidental releases of fission radionuclides on marine ecology. Crown Copyright © 2020 Published by Elsevier B.V.
- ItemBioaccumulation kinetics and organ distribution of cadmium and zinc in the freshwater decapod crustacean macrobrachium australiense(ACS Publications, 2014-12-24) Cresswell, T; Simpson, SL; Mazumder, D; Callaghan, PD; Nguyen, APThis study used the radioisotopes 109Cd and 65Zn to explore the uptake, retention and organ distribution of these nonessential and essential metals from solution by the freshwater decapod crustacean Macrobrachium australiense. Three treatments consisting of cadmium alone, zinc alone, and a mixture of cadmium and zinc were used to determine the differences in uptake and efflux rates of each metal individually and in the metal mixture over a three-week period, followed by depuration for 2 weeks in metal-free water using live-animal gamma-spectrometry. Following exposure, prawns were cryosectioned and the spatial distribution of radionuclides visualized using autoradiography. Metal uptake and efflux rates were the same in the individual and mixed-metal exposures, and efflux rates were close to zero. The majority of cadmium uptake was localized within the gills and hepatopancreas, while zinc accumulated in the antennal gland at concentrations orders of magnitude greater than in other organs. This suggested that M. australiense may process zinc much faster than cadmium by internally transporting the accumulated zinc to the antennal gland. The combination of uptake studies and autoradiography greatly increases our understanding of how metal transport kinetics and internal processing may influence the toxicity of essential and nonessential metals in the environment. © 2014 American Chemical Society
- ItemBioaccumulation kinetics of cadmium and zinc in the freshwater decapod crustacean Paratya australiensis following multiple pulse exposures(Elsevier, 2020-06-10) McDonald, S; Cresswell, T; Hassell, KLStormwater runoff has been identified as a major source of metal contaminants in urban waterways, where during storm events organisms tend to be exposed to short-term pulses, rather than a constant exposure of contaminants. Current water quality guidelines (WQGs) are generally derived using data from continuous exposure toxicity tests, where there is an assumption that chronic exposures provide a meaningful way of assessing the impacts and effects in organisms as a result of these pulsed storm events. In this current study the radioisotopes 109Cd and 65Zn were used to explore uptake, depuration and organ distribution in the decapod crustacean Paratya australiensis, over three short-term (<10 h) exposures. Exposures to radiolabelled cadmium only, zinc only or a mixture of cadmium and zinc were followed by depuration in metal- and isotope-free water for 7 days. Whole-body metal concentrations were determined by live-animal gamma-spectrometry and an anatomical distribution of the radioisotopes was visualised using autoradiography post-mortem. Both metals were significantly accumulated over the pulsed exposure period. In both treatments cadmium and zinc body burden increased at the same rate over the three pulses. Final metal body burden did not markedly differ when shrimp were exposed to metals individually compared to a binary mixture. Over the course of the depuration period, cadmium efflux was minimal, whereas zinc efflux was significant. Autoradiography indicated the presence of both metals in the gills and hepatopancreas throughout the depuration period. These results demonstrate how short-term repeated exposures result in the accumulation of contaminants by shrimp. This study highlights the importance of considering the inclusion of pulsed toxicity tests in frameworks when deriving WQGs. © 2020 Elsevier B.V
- ItemBioaccumulation of 65Zn by the Sydney rock oyster (Saccostrea glomerata) from dissolved and particulate phases(SETAC Australasia, 2014-09) Lee, JH; Birch, GF; Cresswell, T; Payne, TE; Simpson, SLOysters and other similar bivalves are popular ‘biomonitors’ or ‘sentinels’ of the environment and are commonly used to assess the health of marine ecosystems. It has been generally accepted that uptake and bioaccumulation in bivalves is influenced predominantly by dietary ingestion of contaminated particles as well as from dissolved sources. An organism of relevance to Australian ecosystems is the Sydney rock oyster (SRO; Saccostrea glomerata), an intertidal, suspension filter-feeder commonly found on the coasts and estuaries of Victoria, New South Wales, and Queensland, Australia. Farmed SRO organisms were used for a 2 month mesocosm study where specimens were exposed to a gradient of resuspended sediment loads and sediment-bound trace metal concentrations. The results indicated poor correlations between SRO tissue metal concentrations and either sediment metal concentration or resuspended volume, with the greatest bioaccumulation being observed in the control tank containing no sediment. These results suggested that SRO metal bioaccumulation was driven primarily from a dissolved source. To investigate this further, a radiotracer study using the gamma-emitting radioisotope 65Zn was conducted, in which SRO organisms were exposed to the dissolved 65Zn radioisotope at three concentrations (5, 25 and 50 µg/L) for 4 days, followed by 20 days of depuration. Dietary assimilation of Zn was examined through pulse-chase experiments where SRO specimens were fed either 65Zn labelled fine-fraction sediments in suspension, or algae. The outcome of this experiment was to outline the relative importance of dissolved, sedimentary, and algal metal sources, and conclusively determine the primary uptake pathway for metal bioaccumulation. The resulting data were used to establish uptake and efflux rate constants from dissolved sources, and assimilation efficiencies from the dietary sources, which were then incorporated into a biodynamic accumulation model. The results of this study are discussed in the context of the use of bivalves as indicators of sediment quality.
- ItemBiofilm-enhanced adsorption of strong and weak cations onto different microplastic sample types: use of spectroscopy, microscopy and radiotracer methods(Elsevier, 2019-07-01) Johansen, MP; Cresswell, T; Davis, J; Howard, DL; Howell, NR; Prentice, EThe adsorption of metals and other elements onto environmental plastics has been previously quantified and is known to be enhanced by surface-weathering and development of biofilms. However, further biofilm-adsorption characterisation is needed with respect to the fate of radionuclides. This study uses spectroscopy, microscopy and radiotracer methods to investigate the adsorption capacity of relatively strong and weak cations onto different microplastic sample types that were conditioned in freshwater, estuarine and marine conditions although marine data were limited. Fourier-transform infrared spectroscopy confirmed that surface oxidation chemistry changes induced by gamma irradiation were similar to those resulting from environmental exposures. Microscopy elemental mapping revealed patchy biofilm development, which contained Si, Al, and O, consistent with microbial-facilitated capture of clays. The plastics+biofilm of all sample types had measurable adsorption for Cs and Sr radiotracers, suggesting environmental plastics act broadly as a sink for the key pervasive environmental radionuclides of 137Cs and 90Sr associated with releases from nuclear activities. Adsorption onto high-density polyethylene plastic types was greater than that on polypropylene. However, in most cases, the adsorption rates of all types of plastic+biofilm were much lower than those of reference sediments and roughly consistent with their relative exchangeable surface areas. Crown Copyright © 2019 Published by Elsevier Ltd.
- ItemBiomarkers of radiation in the environment: report from Armenia Workshop in November 2017(South Pacific Environmental Radioactivity Association, 2018-11-06) Cresswell, T; Tsakanova, G; Wood, MDRadiation protection of wildlife (animals and plants) has improved over the last two decades with the development of a range of tools and approaches for assessing the impacts of radiation exposure to wildlife. While established radiation benchmarks for wildlife derived from controlled laboratory studies generally protect against both internal and external radiation exposure, recent studies suggest that radiation effects in the environment may be observed at doses below current benchmark values. it is often challenging to characterise wildlife radiation exposure accurately, especially for animals within heterogeneously contaminated environments. Biomarkers have the potential to inform exposure characterisation and impact evaluation; here we define biomarker as “A measurable biological response that provides information on the extent of radiation exposure that has occurred and/or the impact of that exposure." To advance the field of biomarkers of radiation in the environment (BRITE), a workshop was organised in Yerevan, Armenia in November 2017, which brought together more than 40 international scientists from a broad range of disciplines including environmental protection, radiation metrology, radiogenetics, radiobiology and radioecology. Supported by the North Atlantic Treaty Organisation (NATO), this workshop enabled knowledge exchange between leading scientists within these discipline areas, who have research interests aligned with biomarker development. This presentation synthesises the outcomes of this workshop, describing the current state of the art and proposing future research priorities for the development of BRITE. Topics discussed at the BRITE workshop included: (i) biomarker development — what we define as ‘low-dose’, how low we can go with current radiation metrology techniques and how novel use of techniques and datasets can advance biomarker research; (2) how low doses affect biological systems and how predictable the dose-effect relationship is; (3) relative effectiveness of biomarkers for risk evaluation — including whether they work for ‘low-dose’ exposures and whether there are ‘dual use’ biomarkers that inform on both exposure and impact; (4) biomarker use in the environment - whether the current biomarkers are radiation-specific or will respond to non-radiological stressors and whether we need different biomarkers for assessing population-level impacts; (5) key lessons can we learn from human research to support BRITE; and (6) biomarker use and responses — considering how biomarker use could be operationalised from a regulatory/accident response perspective. Several research priorities in the field of BRITE were identified: (1) understanding the difference between dose rate and total dose over the lifetime of the organism and associated dose-response relationships; (2) a need to study the same species across multiple environments with different levels of background radiation in the context of biomarker response; (3) prove causality of radiation-specific biomarkers under a scenario of multiple stressors; and (4) a requirement to focus on a limited set of organisms for biomarker development and screen sensitivity of ecologically-relevant species (e.g. keystone or ecosystem engineer species).
- ItemChallenges in understanding the sources of bioaccumulated metals in biota inhabiting turbid river systems(Springer Link, 2014-01) Cresswell, T; Smith, REW; Simpson, SLBioaccumulation of As, Cd, Cu, Pb and Zn by Macrobrachium prawns was observed to occur in the Strickland River downstream of a gold mine at Porgera, Papua New Guinea. This was despite the total metal concentrations of waters and sediments indicating no difference from reference sites within tributaries. To provide information on potential sources and bioavailability of metals to prawns, an extensive range of analyses were made on waters, suspended solids, deposited sediments and plant materials within the river system. Dissolved metal concentrations were mostly sub-micrograms per liter and no major differences existed in concentrations or speciation between sites within the Strickland River or its tributaries. Similarly, no differences were detected between sites for total or dilute acid-extractable metal concentrations in bed sediments and plant materials, which may be ingested by the prawns. However, the rivers in this region are highly turbid and the dilute acid-extractable cadmium and zinc concentrations in suspended solids were greater at sites in the Strickland River than at sites in tributaries. The results indicated that mine-derived inputs increased the proportion of these forms of metals or metalloids in the Strickland River. These less strongly bound metals and metalloids would be more bioavailable to the prawns via the dietary pathway. The results highlighted many of the difficulties in using routine monitoring data without information on metal speciation to describe metal uptake and predict potential effects when concentrations are low and similar to background. The study indicated that the monitoring of contaminant concentrations in organisms that integrate the exposure from multiple exposure routes and durations may often be more effective for detecting impacts than intermittent monitoring of contaminants in waters and sediments. © 2020 Springer Nature Switzerland AG.
- ItemChallenges with tracing the fate and speciation of mine-derived metals in turbid river systems: implications for bioavailability(Springer, 2013-11-01) Cresswell, T; Smith, REW; Nugegoda, D; Simpson, SLThe fast-flowing and highly turbid Lagaip River (0.5-10 g/L suspended solids) in the central highlands of Papua New Guinea receives mine-derived metal inputs in both dissolved and particulate forms. Nearest the mine, metal concentrations in suspended solids were 360, 9, 90, 740 and 1,300 mg/kg for As, Cd, Cu, Pb and Zn, while dissolved concentrations were 2.7, 0.6, 3.1, 0.1 and 25 mu g/L, respectively. This creates a significant metal exposure source for organisms nearer the mine. However, because the Lagaip River is diluted by a large number of tributaries, the extent to which mine-derived metals may affect biota in the lower catchments is uncertain. To improve our understanding of the forms of potentially bioavailable metals entering the lower river system, we studied the partitioning and speciation of metals within the Lagaip River system. Dissolved and particulate metal concentrations decreased rapidly downstream of the mine due to dilution from tributaries. As a portion of the particulate metal concentrations, the more labile dilute acid-extractable forms typically comprised 10-30 % for As and Pb, 50-75 % for Cu and Zn, and 50-100 % for Cd. Only dissolved Cd, Cu and Zn remained elevated relative to the non-mine-impacted tributaries (< 0.03, 0.5 and 0.3 mu g/L), but the concentrations did not appreciably change with increasing dilution downriver. This indicated that release of Cd, Cu and Zn was likely occurring from the more labile metal phases of the mine-derived particulates. Chelex-labile metal analyses and speciation modelling indicated that dissolved copper and lead were largely non-labile and likely complexed by naturally occurring organic ligands, while dissolved cadmium and zinc were predominantly present in labile forms. The study confirmed that mine-derived particulates may represent a significant source of dissolved metals in the lower river system; however, comparison with water quality guidelines indicates the low concentrations would not adversely affect aquatic life.© 2013, Springer
- ItemComparing trace metal bioaccumulation characteristics of three freshwater decapods of the genus Macrobrachium(Elsevier, 2014-07-01) Cresswell, T; Smith, REW; Nugegoda, D; Simpson, SLPotential sources and kinetics of metal bioaccumulation by the three Macrobrachium prawn species M. australiense, M. rosenbergii and M. latidactylus were assessed in laboratory experiments. The prawns were exposed to two scenarios: cadmium in water only; and exposure to metal-rich mine tailings in the same water. The cadmium accumulation from the dissolved exposure during 7 days, followed by depuration in cadmium-free water for 7 days, was compared with predictions from a biokinetic model that had previously been developed for M. australiense. M. australiense and M. latidactylus accumulated significant tissue cadmium during the exposure phase, albeit with different uptake rates. All three species retained >95% of the bioaccumulated cadmium during the depuration phase, indicating very slow efflux rates. Following exposure to tailings, there were significant (p < 0.05) differences in tissue arsenic, cadmium, lead and zinc concentrations among species. Cadmium and zinc concentrations were increased relative to controls for all three species but were not different between treatments (direct/indirect contact with tailings), suggesting these metals were primarily accumulated via the dissolved phase. All species bioaccumulated significantly greater arsenic and lead when in direct contact with mine tailings, demonstrating the importance of an ingestion pathway for these metals. Copper was not bioaccumulated above control concentrations for any species. The differences between the metal accumulation of the three prawns indicated that a biokinetic model of cadmium bioaccumulation for M. australiense could potentially be used to describe the metal bioaccumulation of the other two prawn species, albeit with an over-prediction of 3–9 times. Despite these being the same genus of decapod crustacean, the study highlights the issues with using surrogate species, even under controlled laboratory conditions. It is recommended that future studies using surrogate species quantify the metal bioaccumulation characteristics of each species in order to account for any differences between species.© 2014, Elsevier B.V.
- ItemCurrent understanding and research needs for ecological risk assessments of naturally occurring radioactive materials (NORM) in subsea oil and gas pipelines(Elsevier, 2022-01) Koppel, DJ; Kho, F; Hastings, A; Crouch, D; MacIntosh, A; Cresswell, T; Higgins, SThousands of offshore oil and gas facilities are coming to the end of their life in jurisdictions worldwide and will require decommissioning. In-situ decommissioning, where the subsea components of that infrastructure are left in the marine environment following the end of its productive life, has been proposed as an option that delivers net benefits, including from: ecological benefits from the establishment of artificial reefs, economic benefits from associated fisheries, reduced costs and improved human safety outcomes for operators. However, potential negative impacts, such as the ecological risk of residual contaminants, are not well understood. Naturally occurring radioactive materials (NORM) are a class of contaminants found in some oil and gas infrastructure (e.g. pipelines) and includes radionuclides of uranium, thorium, radium, radon, lead, and polonium. NORM are ubiquitous in oil and gas reservoirs around the world and may form contamination products including scales and sludges in subsea infrastructure due to their chemistries and the physical processes of oil and gas extraction. The risk that NORM from these sources pose to marine ecosystems is not yet understood meaning that decisions made about decommissioning may not deliver the best outcomes for environments. In this review, we consider the life of NORM-contamination products in oil and gas systems, their expected exposure pathways in the marine environment, and possible ecological impacts following release. These are accompanied by the key research priorities that need to better describe risk associated with decommissioning options. © 2021 Elsevier Ltd
- ItemDietary ingestion of fine sediments and microalgae represent the dominant route of exposure and metal accumulation for Sydney rock oyster (Saccostrea glomerata): a biokinetic model for zinc(Elsevier, 2015-08-01) Lee, JH; Birch, GF; Cresswell, T; Johansen, MP; Adams, MS; Simpson, SLPast studies disagree on the extent to which dissolved or dietary uptake contribute to metal bioaccumulation in the filter-feeding Sydney rock oyster (Saccostrea glomerata) in urbanized estuaries. Although most data support the assumption that fine sediments are a major route of metal uptake in these bivalves, some studies based in the Sydney estuary, Australia, have indicated a poor correlation. In the present study, seawater, sediment and microalgae were radiolabelled with 65Zn tracer and exposed to S. glomerata to assess the influence of dissolved and dietary sources to Zn bioaccumulation. Oysters in the dissolved-phase uptake experiment (5, 25 and 50 μg L−1 65Zn for 4 d followed by 21 days of depuration) readily accumulated 65Zn for all three concentrations with an uptake rate constant of 0.160 ± 0.006 L dry weight g−1 d−1. Oysters in the dietary assimilation experiment (1 h pulse-feed of either 65Zn-radiolabelled suspended fine-fraction (<63 μm) sediment or the microalgae Tetraselmis sp.) accumulated 65Zn, with assimilation efficiencies of 59 and 67% for fine sediment and microalgae, respectively. The efflux rates were low for the three experiments (0.1–0.5% d−1). A bioaccumulation kinetic model predicts that uptake of Zn will occur predominantly through the dietary ingestion of contaminated fine sediment particles and microalgae within the water column, with considerably greater metal bioaccumulation predicted if oysters ingested microalgae preferentially to sediments. However, the model predicts that for dissolved Zn concentrations greater than 40 μg L−1, as observed during precipitation events, the uptake of the dissolved phase may contribute ≥50% to accumulation. Overall, the results of the present study suggest that all three sources may be important exposure routes to S. glomerata under different environmental conditions, but contributions from dietary exposure will often dominate. © 2015 Elsevier
- ItemDietary uptake and depuration kinetics of perfluorooctane sulfonate, perfluorooctanoic acid, and hexafluoropropylene oxide dimer acid (GenX) in a benthic fish(John Wiley & Sons, Inc, 2019-11-21) Hassell, KL; Coggan, TL; Cresswell, T; Kolobaric, A; Berry, K; Crosbie, ND; Blackbeard, J; Pettigrove, VJ; Clarke, BOPer- and poly-fluoroalkyl substances (PFAS) are ubiquitously distributed throughout aquatic environments and can bioaccumulate in organisms. We examined dietary uptake and depuration of a mixture of 3 PFAS: perfluorooctanoic acid (PFOA; C8HF15O2), perfluorooctane sulfonate (PFOS; C8HF17SO3), and hexafluoropropylene oxide dimer acid (HPFO-DA; C6HF11O3; trade name GenX). Benthic fish (blue spot gobies, Pseudogobius sp.) were fed contaminated food (nominal dose 500 ng g–1) daily for a 21-d uptake period, followed by a 42-d depuration period. The compounds PFOA, linear-PFOS (linear PFOS), and total PFOS (sum of linear and branched PFOS) were detected in freeze-dried fish, whereas GenX was not, indicating either a lack of uptake or rapid elimination (<24 h). Depuration rates (d–1) were 0.150 (PFOA), 0.045 (linear-PFOS), and 0.042 (linear+branched-PFOS) with corresponding biological half-lives of 5.9, 15, and 16 d, respectively. The PFOS isomers were eliminated differently, resulting in enrichment of linear-PFOS (70–90%) throughout the depuration period. The present study is the first reported study of GenX dietary bioaccumulation potential in fish, and the first dietary study to investigate uptake and depuration of multiple PFASs simultaneously, allowing us to determine that whereas PFOA and PFOS accumulated as expected, GenX, administered in the same way, did not appear to bioaccumulate. © 2019 SETAC
- ItemEcotoxicological effects of decommissioning offshore petroleum infrastructure: a systematic review(Taylor & Francis, 2021-05-07) MacIntosh, A; Dafforn, KA; Penrose, B; Chariton, AA; Cresswell, TSuccessful decommissioning of subsea oil and gas infrastructure requires a safe and effective approach to assess and manage waste products. These products, often present as scale on internals of pipelines, include naturally occurring radioactive materials (NORM) and trace metals. Understanding the potential effects of these contaminants on marine fauna is crucial to managing global decommissioning. This review is composed of two aspects: 1) a systematic review was conducted to synthesize literature on all contaminants associated with decommissioned offshore structures and the effects of NORM contaminants on marine organisms; 2) a critical review of current environmental regulations for decommissioning and characterization of petroleum scale and NORM components. Studies defining the chemical and radiological contaminants associated with decommissioned structures were very limited. The main source of contaminants was identified from offshore platforms, with none from subsea structures. Only three studies measured variable chemical effects of radium to organisms from scale materials in subsea oil and gas infrastructure. No studies measured effects on organisms from other NORM, such as lead-210 and polonium-210. Currently, there are no international regulations on subsea pipeline closure, with NORM being underreported and not addressed in environmental impact assessments. This review highlights research gaps from environmental monitoring and characterization of NORM associated with decommissioned structures. Key recommendations for future research include characterizing NORM scale and assessing effects of scale to marine organisms through direct organism exposure experiments. This review emphasizes the need to incorporate ecotoxicology into environmental risk assessment for offshore petroleum decommissioning. © 2021 The Author(s). Published with license by Taylor & Francis Group, LLC.
- ItemThe effect of dissolved nickel and copper on the adult coral Acropora muricata and its microbiome(Elsevier, 2019-04-03) Gissi, F; Reichelt-Brushett, AJ; Chariton, AA; Stauber, JL; Greenfield, P; Humphrey, C; Salmon, M; Stephenson, SA; Cresswell, T; Jolley, DFThe potential impacts of mining activities on tropical coastal ecosystems are poorly understood. In particular, limited information is available on the effects of metals on scleractinian corals which are foundation species that form vital structural habitats supporting other biota. This study investigated the effects of dissolved nickel and copper on the coral Acropora muricata and its associated microbiota. Corals collected from the Great Barrier Reef were exposed to dissolved nickel (45, 90, 470, 900 and 9050 μg Ni/L) or copper (4, 11, 32 and 65 μg Cu/L) in flow through chambers at the National Sea Simulator, Townsville, Qld, Australia. After a 96-h exposure DNA metabarcoding (16S rDNA and 18S rDNA) was undertaken on all samples to detect changes in the structure of the coral microbiome. The controls remained healthy throughout the study period. After 36 h, bleaching was only observed in corals exposed to 32 and 65 μg Cu/L and very high nickel concentrations (9050 μg Ni/L). At 96 h, significant discolouration of corals was only observed in 470 and 900 μg Ni/L treatments, the highest concentrations tested. While high concentrations of nickel caused bleaching, no changes in the composition of their microbiome communities were observed. In contrast, exposure to copper not only resulted in bleaching, but altered the composition of both the eukaryote and bacterial communities of the coral's microbiomes. Our findings showed that these effects were only evident at relatively high concentrations of nickel and copper, reflecting concentrations observed only in extremely polluted environments. Elevated metal concentrations have the capacity to alter the microbiomes which are inherently linked to coral health. Crown Copyright ©2019. Published by Elsevier Ltd.
- ItemEffect of short-term dietary exposure on metal assimilation and metallothionein induction in the estuarine fish Pseudogobius sp.(Elsevier, 2021-06-10) McDonald, S; Hassell, K; Cresswell, TMetals introduced into the urban aquatic environment through anthropogenic activities have the potential to accumulate in organisms via multiple uptake routes. Understanding the impact different routes have on metal accumulation is important for the continued management of these ecosystems, where current water quality guidelines (WQGs) tend to be derived from aqueous metal exposure tests. In this study, the estuarine fish Pseudogobius sp. was exposed to a mixture of cadmium (Cd) and zinc (Zn) radiotracers dissolved in water or present in experimental food. Metal-spiked food was presented to fish as a single ‘pulse-chase’ feed or as three consecutive feeds, where the cumulative metal dose provided by both treatments was equal. Fish did not accumulate either metal from water, even after the length of exposure was increased from 12 h to 36 h. Fish did accumulate metals from diet and the assimilation efficiency (AE) was low following a single feed (12% for both Cd and Zn). Following multiple feeds fish displayed a significantly higher AE for zinc only, suggesting that fish are susceptible to retention of dietary Zn over an extended time period albeit at lower daily loadings. The final body burden and efflux rate did not differ between feeding regimes. Tissue accumulation of Cd and Zn indicated metal specific distribution. The gastro-intestinal (GI) tract contained >90% of total Cd body burden, whilst the carcass accounted for the majority (70–88%) of Zn body burden. There was significant induction of the biomarker metallothionein (MT) in the GI tract. These results demonstrate the differences in Cd and Zn metal uptake characteristics in this estuarine fish species, and how feeding frequency and metal loading of food may influence assimilation. This study highlights the importance of considering the inclusion of dietary exposures in WQG frameworks. ©2021 Elsevier B.V
- «
- 1 (current)
- 2
- 3
- »