Browsing by Author "Cranfield, CG"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemThe impact of pH on packing in tethered lipid bilayers(Australian Institute of Nuclear Science and Engineering, 2016-11-29) Cranfield, CG; Berry, T; Holt, SA; Le Brun, AP; Valenzuela, SM; Coster, HGL; Cornell, BAWe report that increasing the H3O+ concentration when lowering the pH reduces the intrinsic ionic conduction through phospholipid bilayers (Fig 1A), which is counter to what might be expected from increasing the H3O+ concentration. We attribute the conduction decrease to a reduction of the molecular area per lipid (ao)[1]. These effects are seen at H3O+ concentrations in the range nM to µM despite these being very low concentrations compared to that of a typical bathing electrolyte solution of 135mM ionic concentration. We present a model, in which the pH dependent reduction in ao favours an increase in lipid packing. To support this model, we provide evidence of the effects of the hydronium ion on lipid geometry using neutron reflectometry (Fig 1C). Further examples will be given of the impact of the H3O ion concentration on the hydrogen bonding within the polar groups of lipid.
- ItemLangmuir-Schaefer deposition to create an asymmetrical lipopolysaccharide sparsely tethered lipid bilayer(Springer Nature, 2021-12) Cranfield, CG; Le Brun, AP; García, ÁL; Cornell, BA; Holt, SABecause they are firmly anchored to a noble metal substrate, tethered bilayer lipid membranes (tBLMs) are considerably more robust than supported lipid bilayers such as black lipid membranes (BLMs) (Cranfield et al. Biophys J 106:182–189, 2014). The challenge to rapidly create asymmetrical tBLMs that include a lipopolysaccharide outer leaflet for bacterial model membrane research can be overcome by the use of a Langmuir-Schaefer deposition protocol. Here, we describe the procedures required to assemble and test asymmetric lipopolysaccharide (LPS) tethered lipid bilayers. © 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.