Browsing by Author "Cortie, DL"
Now showing 1 - 20 of 105
Results Per Page
Sort Options
- Item8Li+ β-NMR in the cubic insulator MgO(IOP Publishing, 2014-12-16) MacFarlane, WA; Parolin, TJ; Cortie, DL; Chow, KH; Hossain, MD; Kiefl, RF; Levy, CDP; McFadden, RML; Morris, GD; Pearson, MR; Saadaoui, H; Salman, Z; Song, Q; Wang, DWe present extensive high magnetic field β-NMR measurements of 8Li+ implanted in single crystals of MgO. The narrow resonance, consistent with a cubic 8Li+ site, likely the tetrahedral interstitital, is used routinely as a reference for shift measurements. We show the intrinsic linewidth is on the order of 200 Hz, allowing a frequency determination to an accuracy of a few Hz. We find no implantation energy dependence of the resonance within a few ppm, but there is evidence of slow spin dynamics in hole-burning measurements. The spin lattice relaxation is slow. The temperature dependence reveals interesting changes at low temperature whose origin remains uncertain. Open Access CC-BY
- Item90° magnetic coupling in a NiFe/FeMn/biased NiFe multilayer spin valve component investigated by polarized neutron reflectometry(American Institute of Physics, 2014-07-17) Callori, SJ; Bertinshaw, J; Cortie, DL; Cai, JW; Le Brun, AP; Zhu, T; Klose, FWe have observed 90° magnetic coupling in a NiFe/FeMn/biased NiFe multilayer system using polarized neutron reflectometry. Magnetometry results show magnetic switching for both the biased and free NiFe layers, the latter of which reverses at low applied fields. As these measurements are only capable of providing information about the total magnetization within a sample, polarized neutron reflectometry was used to investigate the reversal behavior of the NiFe layers individually. Both the non-spin-flip and spin-flip neutron reflectometry signals were tracked around the free NiFe layer hysteresis loop and were used to detail the evolution of the magnetization during reversal. At low magnetic fields near the free NiFe coercive field, a large spin-flip signal was observed, indicating magnetization aligned perpendicular to both the applied field and pinned layer. © 2020 AIP Publishing LLC.
- ItemAdvice on describing Bayesian analysis of neutron and X-ray reflectometry(International Union of Crystallography (IUCr), 2023) McCluskey, AR; Caruana, AJ; Kinane, CJ; Armstrong, AJ; Arnold, T; Cooper, JFK; Cortie, DL; Hughes, AV; Moulin, JF; Nelson, ARJ; Potrezbowski, W; Starostin, VAs a result of the availability of modern software and hardware, Bayesian analysis is becoming more popular in neutron and X-ray reflectometry analysis. The understandability and replicability of these analyses may be harmed by inconsistencies in how the probability distributions central to Bayesian methods are represented in the literature. Herein advice is provided on how to report the results of Bayesian analysis as applied to neutron and X-ray reflectometry. This includes the clear reporting of initial starting conditions, the prior probabilities, the results of any analysis and the posterior probabilities that are the Bayesian equivalent of the error bar, to enable replicability and improve understanding. It is believed that this advice, grounded in the authors' experience working in the field, will enable greater analytical reproducibility in the work of the reflectometry community, and improve the quality and usability of results. © 2023 The Authors. Open Access published under a CC BY 4.0 licence.
- ItemAdvice on describing Bayesian analysis of neutron and x-ray reflectometry(International Union of Crystallography, 2023-02-01) McCluskey, AR; Caruana, AJ; Kinane, CJ; Armstrong, AJ; Arnold, T; Cooper, JFK; Cortie, DL; Hughes, AV; Moulin, JF; Nelson, ARJ; Potrzebowski, W; Starostin, VAs a result of the availability of modern software and hardware, Bayesian analysis is becoming more popular in neutron and X-ray reflectometry analysis. The understandability and replicability of these analyses may be harmed by inconsistencies in how the probability distributions central to Bayesian methods are represented in the literature. Herein advice is provided on how to report the results of Bayesian analysis as applied to neutron and X-ray reflectometry. This includes the clear reporting of initial starting conditions, the prior probabilities, the results of any analysis and the posterior probabilities that are the Bayesian equivalent of the error bar, to enable replicability and improve understanding. It is believed that this advice, grounded in the authors' experience working in the field, will enable greater analytical reproducibility in the work of the reflectometry community, and improve the quality and usability of results. © The Authors CC BY 4.0
- ItemAntiferromagnetic topological insulating state in Tb0.02Bi1.08Sb0.9Te2S single crystals(American Physical Society (APS), 2023-03-13) Guo, L; Zhao, WY; Li, Q; Xu, M; Chen, L; Bake, A; Vu, THY; He, YH; Fang, Y; Cortie, DL; Mo, SK; Edmonds, MT; Wang, XL; Dong, S; Karel, J; Zheng, RKTopological insulators are emerging materials with insulating bulk and symmetry protected nontrivial surface states. One of the most fascinating transport behaviors in a topological insulator is the quantized anomalous Hall insulator, which has been observed in magnetic-topological-insulator-based devices. In this work, we report a successful doping of rare earth element Tb into Bi1.08Sb0.9Te2S topological insulator single crystals, in which the Tb moments are antiferromagnetically ordered below ∼10 K. Benefiting from the in-bulk-gap Fermi level, transport behavior dominant by the topological surface states is observed below ∼150 K. At low temperatures, strong Shubnikov-de Haas oscillations are observed, which exhibit 2D-like behavior. The topological insulator with long range magnetic ordering in rare earth doped Bi1.08Sb0.9Te2S single crystal provides an ideal platform for quantum transport studies and potential applications. ©2023 American Physical Society.
- ItemBoson peak in ultrathin alumina layers investigated with neutron spectroscopy(American Physical Society, 2020-06-11) Cortie, DL; Cyster, MJ; Ablott, TA; Richardson, C; Smith, JS; Iles, GN; Wang, XL; Mitchell, DRG; Mole, RA; de Souza, NR; Yu, DH; Cole, JHBulk glasses exhibit extra vibrational modes at low energies, collectively known as the boson peak. The vibrational dynamics in nanoscale alumina glasses have an impact on the performance of qubits and other superconducting devices; however, the frequency of the boson peak has not been previously measured. Here we report neutron spectroscopy experiments on Al/Al2O3 nanoparticles consisting of spherical metallic cores with a radii from 20 to 1000 nm surrounded by a 3.5-nm-thick alumina glass. A low-energy peak is observed at ωBP = 2.8 ± 0.6 meV for highly oxidized particles, indicating an excess in the density of states. The intensity of the peak scales inversely with particle size and oxide fraction, indicating a surface origin, and is redshifted by 3 meV with respect to the van Hove singularity of γ -phase Al2O3 nanocrystals. Molecular-dynamics simulations of α-Al2O3, γ -Al2O3 and α-Al2O3 show that the observed boson peak is a signature of the ultrathin glass surface and the characteristic frequency is reduced compared to the peak in the bulk glass. © 2020 The Authors. Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license.
- ItemCollective nonlinear electric polarization via defect-driven local symmetry breaking(Royal Society of Chemistry, 2019-05-17) Dong, W; Cortie, DL; Lu, T; Sun, QB; Narayanan, N; Hu, WB; Jacob, L; Li, Q; Yu, DH; Chen, H; Chen, AP; Wei, XY; Wang, G; Humphrey, MG; Frankcombe, TJ; Liu, YIn this work, we report the defect-mediated, abnormal non-linear polarization behavior observed in centrosymmetric rutile TiO2 where less than 1 at% of sterically mismatched Mg2+ ions are introduced to create ferroelectric-like polarization hysteresis loops. It is found that the Image ID:c9mh00516a-t2.gif defect cluster produces a dipole moment exceeding 6 Debye, with a rotatable component. Such a polarization is further enhanced by the displacement of neighboring Ti4+ ions. The coupling between such defect-driven symmetry-breaking regions generates a collective nonlinear electrical polarization state that persists to high temperatures. More importantly, an observation of abnormal bias shift of polarization hysteresis suggests an antiparallel alignment of certain dipoles frozen relative to the external poling electric field, which is associated with oxygen vacancy hopping. This result challenges the long-standing notion of parallel alignment of dipoles with the external electric field in ferroelectrics. This work also reveals an unexpected new form of non-linear dielectric polarization (non-ferroelectricity) in solid-state materials. © Royal Society of Chemistry 2024
- ItemComplementary terahertz absorption and inelastic neutron study of the dynamic anisotropy contribution to zone-center spin waves in a canted antiferromagnet NdFeO3(APS Physics, 2014-08-19) Constable, E; Cortie, DL; Horvat, J; Lewis, RA; Cheng, Z; Deng, G; Cao, S; Yuan, S; Ma, GWe employ a combination of pulsed- and continuous-wave polarized terahertz spectroscopy techniques to probe temperature-dependent spin waves in the antiferromagnet NdFeO3. Our optical data span 1.6–467 K and reveal a conspicuous spin reorientation between 110 and 170 K, during which the lower-energy mode softens completely. Complementary inelastic neutron scattering reveals that the frequencies of the optically excited spin waves are consistent with a temperature-variable spin gap in the low-energy spin-wave dispersion of NdFeO3. The result links the temperature dependence of the spin waves to a dynamic in-plane anisotropy. The magnetic anisotropy is calculated based on the results of the optical measurements. The change observed in the anisotropy energy along the a and c crystal axes suggests that the spin reorientation evident in NdFeO3 is driven by temperature-dependent in-plane anisotropy.© 2014, American Physical Society.
- ItemCopper diffusion rates and hopping pathways in superionic Cu 2Se: implications for thermoelectricity(SSRN, 2020-10-21) Nazrul Islam, SMK; Mayank, P; Ouyang, Y; Chen, J; Sagotra, AK; Li, M; Cortie, MB; Mole, RA; Cazorla, C; Yu, DH; Wang, XL; Robinson, RA; Cortie, DLThe ultra-low thermal conductivity of Cu2Se is well established, but there is so far no consensus on the underlying mechanism. One proposal is that the fast-ionic diffusion of copper suppresses the acoustic phonons. The diffusion coefficients reported previously, however, differ by two orders of magnitude between the various studies and it remains unclear whether the diffusion is fast enough to impact the heat-bearing phonons. Here, a two-fold approach is used to accurately re-determine the diffusion rates. Ab-initio molecular dynamics simulations, incorporating landmark analysis techniques, were closely compared with experimental quasielastic/inelastic neutron spectroscopy. Reasonable agreement was found between these approaches, consistent with the experimental coefficient of 3.1 ± 1.3 10-5 cm2.s-1 and an activation barrier of 140 ± 60 meV. The hopping mechanism includes short 2 Å hops between tetragonal and interstitial octahedral sites. This process forms dynamic Frenkel defects, however, there is no indication of additional broadening in the density-of-states indicating the intrinsic anharmonic interactions dictate the phonon lifetimes. © Preprint article - 2023 Elsevier Inc.
- ItemCopper diffusion rates and hopping pathways in superionic Cu2Se(Elsevier, 2021-08-15) Nazrul Islam, SMK; Mayank, P; Ouyang, Y; Chen, J; Sagotra, AK; Li, M; Cortie, MB; Mole, RA; Cazorla, C; Yu, DH; Wang, XL; Robinson, RA; Cortie, DLThe ultra-low thermal conductivity of Cu2Se is well established, but so far there is no consensus on the underlying mechanism. One proposal is that the fast-ionic diffusion of copper suppresses the acoustic phonons. The diffusion coefficients reported previously, however, differ by two orders of magnitude between the various studies and it remains unclear whether the diffusion is fast enough to impact the heat-bearing phonons. Here, a two-fold approach is used to accurately re-determine the diffusion rates. Ab-initio molecular dynamics simulations, incorporating landmark analysis techniques, were closely compared with experimental quasielastic/inelastic neutron scattering. Reasonable agreement was found between these approaches, consistent with a diffusion coefficient of 3.1 ± 1.3 x 10−5 cm2.s−1 at 675 K and an activation barrier of 140 ± 60 meV. The hopping mechanism includes short 2 Å hops between tetrahedral and interstitial octahedral sites. This process forms dynamic Frenkel defects. Despite the latter processes, there is no major loss of the phonon mode intensity in the superionic state, and there is no strong correlation between the phonon spectra and the increased diffusion rates. Instead, intrinsic anharmonic phonon interactions appear to dictate the thermal conductivity above and below the superionic transition, and there is only subtle mode broadening associated with the monoclinic-cubic structural transition point, with the phonon density-of-states remaining almost constant at higher temperatures. © 2021 Acta Materialia Inc.
- ItemCorrelating uncompensated antiferromagnetic moments and exchange coupling interactions in interface ion-beam bombarded Co90Fe10/CoFe-oxide bilayers(IOP Publishing LTD, 2012-11-01) Shueh, C; Chen, PS; Cortie, DL; Klose, F; Chen, WC; Wu, TH; van Lierop, J; Lin, KWThe coercivity and exchange bias field of ferro-/antiferromagnetic Co(90)Fe(10)/CoFe-oxide bilayers were studied as function of the surface morphology of the bottom CoFe-oxide layer. The CoFe-oxide surface structure was varied systematically by low energy (0-70 V) Argon ion-beam bombardment before subsequent deposition of the Co(90)Fe(10) layer. Transmission electron microscopy results showed that the bilayer consisted of hcp Co(90)Fe(10) and rock-salt CoFe-oxide. At low temperatures, enhanced coercivities and exchange bias fields with increasing ion-beam bombardment energy were observed, which are attributed to defects and uncompensated moments created near the CoFe-oxide surface in increasing amounts with larger ion-beam bombardment energies. Magnetometry results also showed an increasing divergence of the low field temperature dependent magnetization [Delta M(T)] between field-cooling and zero-field-cooling processes, and an increasing blocking temperature with increasing ion-beam bombardment energy. © 2012 IOP Publishing LTD.
- ItemCreating thin magnetic layers at the surface of Sb2Te3 topological insulators using a low-energy chromium ion beam(AIP Publishing, 2020-05-11) Cortie, DL; Zhao, WY; Yue, Z; Li, Z; Bake, A; Marenych, O; Pastuovic, Z; Nancarrow, M; Zhang, ZM; Qi, DC; Evans, PJ; Mitchell, DRG; Wang, XLThe surfaces of Sb2Te3 topological insulator crystals were implanted using a 40 keV chromium ion beam. To facilitate uniform doping, the Sb2Te3 was passivated with a thin TiO2 film before the implantation step. The resulting chemical structure was studied using atomic-resolution transmission electron microscopy. A fluence of 7 × 1015 ions/cm2 at 40 keV lead to amorphization of the Sb2Te3 surface, with chromium predominantly incorporated in the amorphous layer. Heating to 200 °C caused the amorphous region to recrystallize and led to the formation of a thin chromium-rich interfacial layer. Near-edge x-ray absorption spectroscopy indicates a uniform valence state of Cr3+ throughout, with no evidence of metallic clustering. High-temperature superparamagnetic behavior was detected up to 300 K, with an increased magnetic moment below 50 K. © 2020 Author(s).
- ItemDepth control of ferromagnetism in FePt3 films by ion-irradiation(International Conference on Neutron Scattering, 2017-07-12) Causer, GL; Cortie, DL; Zhu, HL; Ionescu, M; Mankey, GJ; Klose, FThe roadmap which outlines storage technology of magnetic hard disk drives predicts storage densities above 5 Tb/in2 to be realised by isolated, individually addressable ferromagnetic (FM) bits of <10 nm in lateral dimension. In principle, artificially patterned structures of this type can be manufactured by x-ray, ion-and electron-beam lithography. However, there may be alternative solutions for obtaining these regular, nanoscale patterns of isolated FM dots. Our proposal is to locally transform a non-magnetic layer into a pattern of geometrically defined FM islands. Such a phase transition could be initiated by locally changing some physical parameter of the layer, such as its strain state or chemical composition leading to ferromagnetism. Here, we present a chemical order (paramagnetic) to chemical disorder (FM) phase transition stimulated by He+ irradiation of a FePt3 thin film. This talk will present preliminary work focussing on depth profiling the ion-beam induced FM order. By controlling the energy (15 keV) and fluence (2x1016 ions/cm2) of the ion-beam, we show ferromagnetism can be locally induced into the upper-half volume of the initially chemically well-ordered 280 nm FePt3 film. Polarised neutron reflectometry was used to investigate the depth dependence of the layer averaged ion-beam induced FM moment within the thin film. Data analysis of the Kiessig fringes observed in the reflectivity post-irradiation suggest the FM / nonmagnetic interface is atomically sharp. The resulting bilayer structure was found to be homogenous in chemical composition but heterogeneous in both chemical and magnetic orders.
- ItemDepth-profiling magnetic interfaces formed intrinsically in FePt3 by ion-beams(American Physical Society, 2018-03-07) Causer, GL; Cortie, DL; Zhu, HL; Ionescu, M; Mankey, GJ; Wang, XL; Klose, FUsing ion-beams to locally modify material properties is rapidly gaining momentum as a technique of choice for the fabrication of magnetic nano-elements because the method provides the capability to nano-engineer in 3D, which is important for many future spintronic technologies. The precise definition of the resulting element shape is crucial for device functionality. In this work, the intrinsic sharpness of a magnetic interface formed by nano-machining FePt3 films using He+ irradiation is investigated. Through careful selection of the irradiating ion’s energy and fluence, ferromagnetism is locally induced into a fractional volume of a paramagnetic (PM) FePt3 film by modifying the chemical order parameter. Using a combination of magnetometry, transmission electron microscopy and polarised neutron reflectometry it is demonstrated that the interface over which the PM to ferromagnetic modulation occurs is confined to a few atomic monolayers only. Using density functional theory, the mechanism for the ion-beam induced magnetic transition is elucidated and shown to be caused by an intermixing of Fe and Pt atoms in anti-site defects above a threshold density.
- ItemDepth-resolved measurement of the Meissner screening profile in a niobium thin film from spin-lattice relaxation of the implanted β-emitter 8Li(AIP Publishing, 2023-10-28) McFadden, RML; Asaduzzaman, M; Buck, TJ; Cortie, DL; Dehn, MH; Dunsiger, SR; Kiefl, RF; Laxdal, RE; Levy, CDP; MacFarlane, WA; Morris, GD; Pearson, MR; Thoeng, E; Junginger, TWe report measurements of the Meissner screening profile in a Nb(300 nm)/Al2O3 thin film using 8Liβ-detected nuclear magnetic resonance (β-NMR). The NMR probe 8Li was ion-implanted into the Nb film at energies ≤ 20 keV, corresponding to mean stopping depths comparable to Nb’s magnetic penetration depth λ. 8Li’s strong dipole–dipole coupling with the host 93Nb nuclei provided a “cross-relaxation” channel that dominated in low magnetic fields, which conferred indirect sensitivity to the local magnetic field via the spin-lattice relaxation (SLR) rate 1/T1. From a fit of the 1/T1 data to a model accounting for its dependence on temperature, magnetic field, and 8Li+ implantation energy, we obtained a magnetic penetration depth λ0= 51.5(22) nm, consistent with a relatively short carrier mean-free-path ℓ= 18.7(29) nm typical of similarly prepared Nb films. The results presented here constitute an important step toward using 8Liβ-NMR to characterize bulk Nb samples with engineered surfaces, which are often used in the fabrication of particle accelerators. © © 2023 Author(s). Published under an exclusive license by AIP Publishing.
- ItemDevelopment and investigation of a NASICON‐type high‐voltage cathode material for high‐power sodium‐ion batteries(Wiley, 2020-02-03) Chen, MZ; Hua, WB; Xiao, J; Cortie, DL; Guo, XD; Wang, E; Gu, QF; Hu, Z; Indris, S; Wang, XL; Chou, SL; Dou, SXHerein, we introduce a 4.0 V class high‐voltage cathode material with a newly recognized sodium superionic conductor (NASICON)‐type structure with cubic symmetry (space group P213), Na3V(PO3)3N. We synthesize an N‐doped graphene oxide‐wrapped Na3V(PO3)3N composite with a uniform carbon coating layer, which shows excellent rate performance and outstanding cycling stability. Its air/water stability and all‐climate performance were carefully investigated. A near‐zero volume change (ca. 0.40 %) was observed for the first time based on in situ synchrotron X‐ray diffraction, and the in situ X‐ray absorption spectra revealed the V3.2+/V4.2+ redox reaction with high reversibility. Its 3D sodium diffusion pathways were demonstrated with distinctive low energy barriers. Our results indicate that this high‐voltage NASICON‐type Na3V(PO3)3N composite is a competitive cathode material for sodium‐ion batteries and will receive more attention and studies in the future. © 2019Wiley-VCHVerlagGmbH&Co
- ItemDevelopment and investigation of a NASICON‐type high‐voltage cathode material for high‐power sodium‐ion batteries(Wiley, 2020-02-03) Chen, MZ; Hua, WB; Xiao, J; Cortie, DL; Guo, XD; Wang, E; Gu, QF; Hu, Z; Indris, S; Wang, XL; Chou, SL; Dou, SXHerein, we introduce a 4.0 V class high‐voltage cathode material with a newly recognized sodium superionic conductor (NASICON)‐type structure with cubic symmetry (space group P213), Na3V(PO3)3N. We synthesize an N‐doped graphene oxide‐wrapped Na3V(PO3)3N composite with a uniform carbon coating layer, which shows excellent rate performance and outstanding cycling stability. Its air/water stability and all‐climate performance were carefully investigated. A near‐zero volume change (ca. 0.40 %) was observed for the first time based on in situ synchrotron X‐ray diffraction, and the in situ X‐ray absorption spectra revealed the V3.2+/V4.2+ redox reaction with high reversibility. Its 3D sodium diffusion pathways were demonstrated with distinctive low energy barriers. Our results indicate that this high‐voltage NASICON‐type Na3V(PO3)3N composite is a competitive cathode material for sodium‐ion batteries and will receive more attention and studies in the future. Copyright © 1999-2024 John Wiley & Sons, Inc or related companies.
- ItemDirect measurement of the intrinsic sharpness of magnetic interfaces formed by chemical disorder using a He+ beam(American Chemical Society, 2018-04-27) Causer, GL; Cortie, DL; Zhu, H; Ionescu, M; Mankey, GJ; Wang, XL; Klose, FUsing ion beams to locally modify material properties and subsequently drive magnetic phase transitions is rapidly gaining momentum as the technique of choice for the fabrication of magnetic nanoelements. This is because the method provides the capability to engineer in three dimensions on the nanometer length scale. This will be an important consideration for several emerging magnetic technologies (e.g., spintronic devices and racetrack and random-access memories) where device functionality will hinge on the spatial definition of the incorporated magnetic nanoelements. In this work, the fundamental sharpness of a magnetic interface formed by nanomachining FePt3 films using He+ irradiation is investigated. Through careful selection of the irradiating ion energy and fluence, room-temperature ferromagnetism is locally induced into a fractional volume of a paramagnetic (PM) FePt3 film by modifying the chemical order parameter. A combination of transmission electron microscopy, magnetometry, and polarized neutron reflectometry measurements demonstrates that the interface over which the PM-to-ferromagnetic modulation occurs in this model system is confined to a few atomic monolayers only, while the structural boundary transition is less well-defined. Using complementary density functional theory, the mechanism for the ion-beam-induced magnetic transition is elucidated and shown to be caused by an intermixing of Fe and Pt atoms in antisite defects above a threshold density. © 2018 American Chemical Society.
- ItemDirect measurements of the temperature, depth and processing dependence of phenyl ring dynamics in polystyrene thin films by β-detected NMR(Royal Society of Chemistry, 2018-05-24) McKenzie, I; Chai, Y; Cortie, DL; Forrest, JA; Fujimoto, D; Karner, VL; Kiefl, RF; Levy, CDP; MacFarlane, WA; McFadden, RML; Morris, GD; Pearson, MR; Zhu, SThere is indirect evidence that the dynamics of a polymer near a free surface are enhanced compared with the bulk but there are few studies of how dynamics varies with depth. β-Detected nuclear spin relaxation of implanted 8Li+ has been used to directly probe the temperature and depth dependence of the γ-relaxation mode, which is due to phenyl rings undergoing restricted rotation, in thin films of atactic deuterated polystyrene (PS-d8) and determine how the depth dependence of dynamics is affected by sample processing, such as annealing, floating on water and the inclusion of a surfactant, and by the presence of a buried interface. The activation energy for the γ-relaxation process is lower near the free surface. Annealing the PS-d8 films and then immersing in water to mimic the floating procedure used to transfer films had negligible effects on the thickness of the region near the free surface with enhanced mobility. Measurements on a bilayer film indicate enhanced phenyl ring dynamics near the buried interface compared with a single film at the same depth. PS-d8 films annealed with the surfactant sodium dodecyl sulfate (SDS) deposited on the surface show enhanced dynamics in the bulk compared with a pure PS-d8 film and a PS-d8 film where the SDS was washed away. There is less contrast between the surface and bulk in the SDS-treated sample, which could account for the elimination of the Tg confinement effect observed in films containing SDS [Chen and Torkelson, Polymer, 2016, 87, 226]. © The Royal Society of Chemistry 2018.
- ItemDoes the boson peak survive in an ultrathin oxide glass?(arXiv.org, 2019-07-29) Cortie, DL; Cyster, MJ; Smith, JS; Iles, GN; Wang, XL; Mitchell, DRG; Mole, RA; de Souza, NR; Yu, DH; Cole, JHBulk glasses exhibit extra vibrational modes at low energies, known as the boson peak. The microscopic dynamics in nanoscale alumina impact the performance of qubits and other superconducting devices, however the existence of the boson peak in these glasses has not been previously measured. Here we report neutron spectroscopy on Al/Al2O3−x nanoparticles consisting of spherical metallic cores from 20 to 1000 nm surrounded by a 3.5 nm thick alumina glass. An intense low-energy peak is observed at ωBP = 2.8 ± 0.6 meV for highly oxidised particles, concurrent with an excess in the density of states. The intensity of the peak scales inversely with particle size and oxide fraction indicating a surface origin, and is red-shifted by 3 meV with respect to the van-Hove singularity of γ-phase Al2O3−x nanocrystals. Molecular dynamics simulations of α-Al2O3−x, γ-Al2O3−x and a-Al2O3−x show that the observed boson peak is a signature of the ultrathin glass surface, and the frequency is softened compared to that of the hypothetical bulk glass.