Browsing by Author "Cooper, SJB"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemRainfall as a trigger of ecological cascade effects in an Australian groundwater ecosystem(Springer Nature Limited, 2021-02-12) Saccò, M; Blyth, AJ; Humphreys, WF; Cooper, SJB; White, NE; Mousavi-Derazmahalleh, M; Hua, Q; Mazumder, D; Smith, C; Griebler, C; Grice, KGroundwaters host vital resources playing a key role in the near future. Subterranean fauna and microbes are crucial in regulating organic cycles in environments characterized by low energy and scarce carbon availability. However, our knowledge about the functioning of groundwater ecosystems is limited, despite being increasingly exposed to anthropic impacts and climate change-related processes. In this work we apply novel biochemical and genetic techniques to investigate the ecological dynamics of an Australian calcrete under two contrasting rainfall periods (LR—low rainfall and HR—high rainfall). Our results indicate that the microbial gut community of copepods and amphipods experienced a shift in taxonomic diversity and predicted organic functional metabolic pathways during HR. The HR regime triggered a cascade effect driven by microbes (OM processors) and exploited by copepods and amphipods (primary and secondary consumers), which was finally transferred to the aquatic beetles (top predators). Our findings highlight that rainfall triggers ecological shifts towards more deterministic dynamics, revealing a complex web of interactions in seemingly simple environmental settings. Here we show how a combined isotopic-molecular approach can untangle the mechanisms shaping a calcrete community. This design will help manage and preserve one of the most vital but underrated ecosystems worldwide. © 2021 The Authors Open Access This article is licensed under a Creative Commons Attribution 4.0 International Licence.
- ItemRefining trophic dynamics through multi-factor Bayesian mixing models: a case study of subterranean beetles(John Wiley & Sons, Inc, 2020-07-20) Saccò, M; Blyth, AJ; Humphreys, WF; Cooper, SJB; Austin, AD; Hyde, J; Mazumder, D; Hua, Q; White, NE; Grice, KFood web dynamics are vital in shaping the functional ecology of ecosystems. However, trophic ecology is still in its infancy in groundwater ecosystems due to the cryptic nature of these environments. To unravel trophic interactions between subterranean biota, we applied an interdisciplinary Bayesian mixing model design (multi-factor BMM) based on the integration of faunal C and N bulk tissue stable isotope data (δ13C and δ15N) with radiocarbon data (Δ14C), and prior information from metagenomic analyses. We further compared outcomes from multi-factor BMM with a conventional isotope double proxy mixing model (SIA BMM), triple proxy (δ13C, δ15N, and Δ14C, multi-proxy BMM), and double proxy combined with DNA prior information (SIA + DNA BMM) designs. Three species of subterranean beetles (Paroster macrosturtensis, Paroster mesosturtensis, and Paroster microsturtensis) and their main prey items Chiltoniidae amphipods (AM1: Scutachiltonia axfordi and AM2: Yilgarniella sturtensis), cyclopoids and harpacticoids from a calcrete in Western Australia were targeted. Diet estimations from stable isotope only models (SIA BMM) indicated homogeneous patterns with modest preferences for amphipods as prey items. Multi-proxy BMM suggested increased—and species-specific—predatory pressures on amphipods coupled with high rates of scavenging/predation on sister species. SIA + DNA BMM showed marked preferences for amphipods AM1 and AM2, and reduced interspecific scavenging/predation on Paroster species. Multi-factorial BMM revealed the most precise estimations (lower overall SD and very marginal beetles' interspecific interactions), indicating consistent preferences for amphipods AM1 in all the beetles' diets. Incorporation of genetic priors allowed crucial refining of the feeding preferences, while integration of more expensive radiocarbon data as a third proxy (when combined with genetic data) produced more precise outcomes but close dietary reconstruction to that from SIA + DNA BMM. Further multidisciplinary modeling from other groundwater environments will help elucidate the potential behind these designs and bring light to the feeding ecology of one the most vital ecosystems worldwide. © 2020 The Authors, published by John Wiley & Sons Ltd.
- ItemStygofaunal community trends along varied rainfall conditions: deciphering ecological niche dynamics of a shallow calcrete in Western Australia(John Wiley & Sons, Inc, 2019-09-16) Saccò, M; Blyth, AJ; Humphreys, WF; Karasiewicz, S; Meredith, KT; Laini, A; Cooper, SJB; Bateman, PW; Grice, KGroundwaters host highly adapted fauna, known as stygofauna, which play a key role in maintaining the functional integrity of subterranean ecosystems. Stygofaunal niche studies provide insights into the ecological dynamics shaping the delicate balance between the hydrological conditions and community diversity patterns. This work aims to unravel the ecological trends of a calcrete stygofaunal community, with special focus on niche dynamics through the Outlying Mean Index analysis (OMI) and additional calculation of Within Outlying Mean Indexes (WitOMI), under three rainfall regimes. Temperature and pH changed significantly among different rainfall conditions (P < .001), and together with salinity were the most influential drivers in shaping stygofaunal assemblages. These environmental conditions, linked with nutrient fluctuations in the groundwater, constrained changes in niche occupation for water mites, two species of beetles and juvenile amphipods (OMI analysis, P < .05). The WitOMI analysis revealed differential subniche breadths linked with taxa-specific adaptations after different rainfall conditions. Our results indicate that stygofaunal niches are closely linked to the hydrodynamic conditions influenced by different rainfall regimes. Further long-term investigations, incorporating broader ecological perspectives, will help to understand the impacts associated with climate change and anthropogenic pressures on one of the most threatened ecosystems in the world. © 2019 John Wiley & Sons, Ltd.
- ItemTracking down carbon inputs underground from an arid zone Australian calcrete(Public Library of Science (PLOS), 2020-08-28) Saccò, M; Blyth, AJ; Humphreys, WF; Middleton, JA; White, NE; Campbell, M; Mousavi-Derazmahalleh, M; Laini, A; Hua, Q; Meredith, KT; Cooper, SJB; Griebler, C; Allard, S; Grierson, P; Grice, KFreshwater ecosystems play a key role in shaping the global carbon cycle and maintaining the ecological balance that sustains biodiversity worldwide. Surficial water bodies are often interconnected with groundwater, forming a physical continuum, and their interaction has been reported as a crucial driver for organic matter (OM) inputs in groundwater systems. However, despite the growing concerns related to increasing anthropogenic pressure and effects of global change to groundwater environments, our understanding of the dynamics regulating subterranean carbon flows is still sparse. We traced carbon composition and transformations in an arid zone calcrete aquifer using a novel multidisciplinary approach that combined isotopic analyses of dissolved organic carbon (DOC) and inorganic carbon (DIC) (δ13CDOC, δ13CDIC, 14CDOC and 14CDIC) with fluorescence spectroscopy (Chromophoric Dissolved OM (CDOM) characterisation) and metabarcoding analyses (taxonomic and functional genomics on bacterial 16S rRNA). To compare dynamics linked to potential aquifer recharge processes, water samples were collected from two boreholes under contrasting rainfall: low rainfall ((LR), dry season) and high rainfall ((HR), wet season). Our isotopic results indicate limited changes and dominance of modern terrestrial carbon in the upper part (northeast) of the bore field, but correlation between HR and increased old and 13C-enriched DOC in the lower area (southwest). CDOM results show a shift from terrestrially to microbially derived compounds after rainfall in the same lower field bore, which was also sampled for microbial genetics. Functional genomic results showed increased genes coding for degradative pathways—dominated by those related to aromatic compound metabolisms—during HR. Our results indicate that rainfall leads to different responses in different parts of the bore field, with an increase in old carbon sources and microbial processing in the lower part of the field. We hypothesise that this may be due to increasing salinity, either due to mobilisation of Cl- from the soil, or infiltration from the downstream salt lake during HR. This study is the first to use a multi-technique assessment using stable and radioactive isotopes together with functional genomics to probe the principal organic biogeochemical pathways regulating an arid zone calcrete system. Further investigations involving extensive sampling from diverse groundwater ecosystems will allow better understanding of the microbiological pathways sustaining the ecological functioning of subterranean biota. © 2020 Saccò et al