Browsing by Author "Christensen, S"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemCombined X-ray and neutron diffraction study of vacancies and disorder in the dimorphic clathrate Ba8Ga16Sn30 of type I and VIII(Royal Society of Chemistry, 2013-01-01) Christensen, S; Avila, MA; Suekuni, K; Piltz, RO; Takabatake, T; Christensen, MWe report detailed structural investigations of the dimorphic clathrate Ba8Ga16Sn30 that crystallizes in both type I and VIII clathrate structures. Single crystals of type I and VIII have been examined using single crystal X-ray and Laue neutron diffraction in the temperature range T = 10 K-500 K. The utilization of both X-ray and neutron diffraction gives a unique ability to reveal the occurrence of minute vacancy occupancies in the host structure. The vacancies are shown to be located on the 6c (type I) and 24g (type VIII) framework sites. Largest vacancy densities are observed for type I p-Ba8Ga16Sn30, 1.3(4)%, and type VIII n-Ba8Ga16Sn30, 0.7(2)%. The relation between guest atom disorder and occurrence of glasslike thermal conductivity in intermetallic clathrates was also investigated. In type VIII Ba8Ga16Sn30 neither n-type (crystalline thermal conductivity) nor p-type (glasslike thermal conductivity) showed any significant disorder of the guest atoms; they do however show anharmonic motion. The glasslike thermal conductivity of p-type Ba8Ga16Sn30 is interpretable as a result of higher effective mass of p-type charge-carriers affecting phonon scattering. In type I Ba8Ga16Sn30 guest atoms are highly disordered for both carrier types and samples of both charge carrier types have glasslike thermal conductivity. © 2013, Royal Society of Chemistry.
- Item“Glass-like” thermal conductivity gradually induced in thermoelectric Sr8Ga16Ge30 clathrate by off-centered guest atoms(AIP Publishing, 2016-05-10) Christensen, S; Schmøkel, MS; Borup, KA; Madsen, GKH; McIntyre, GJ; Capelli, SC; Christensen, M; Iversen, BBThe origin of the “glass-like” plateau in thermal conductivity of inorganic type I clathrates has been debated for more than a decade. Here, it is demonstrated that the low temperature thermal conductivity of Sr8Ga16Ge30 can be controlled by the synthesis method: A flux-grown sample has a “glass-like” plateau in thermal conductivity at low temperature, while a zone-melted sample instead has a crystalline peak. A combination of flux-growth and zone-melting produces an intermediate thermal conductivity. In a comprehensive study of three single crystal samples, it is shown by neutron diffraction that the transition from crystalline peak to “glass-like” plateau is related to an increase in Sr guest atom off-centering distance from 0.24 Å to 0.43 Å. By modifying ab initio calculated force constants for the guest atom to an isotropic model, we reproduce both measured heat capacity and inelastic neutron scattering data. The transition from peak to plateau in the thermal conductivity can be modeled by a combined increase of Rayleigh and disorder scattering. Measurement of heat capacity refutes simple models for tunneling of Sr between off-center sites. Furthermore, the electronic properties of the same samples are characterized by Hall carrier density, Seebeck coefficient, and resistivity. The present comprehensive analysis excludes tunneling and charge carrier scattering as dominant contributors to the “glass-like” plateau. The increased guest atom off-centering distance controlled by synthesis provides a possible microscopic mechanism for reducing the low temperature thermal conductivity of clathrates. © 2021 AIP Publishing LLC.