Browsing by Author "Chowdhury, MAH"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemAn inert-gas furnace for neutron scattering measurements of internal stresses in engineering materials(IOP Publishing Ltd, 2012-04-01) Haynes, R; Paradowska, AM; Chowdhury, MAH; Goodway, CM; Done, R; Kirichek, O; Oliver, ECThe ENGIN-X beamline is a dedicated engineering science facility at ISIS optimized for the measurement of strain, and thus stress, deep within crystalline materials using the atomic lattice planes as an atomic ‘strain gauge’. Internal stresses in materials have a considerable effect on material properties including fatigue resistance, fracture toughness and strength. The growing interest in properties of materials at high temperatures may be attributed to the dynamic development in technologies where materials are exposed to a high-temperature environment for example in the aerospace industry or fission and fusion nuclear reactors. This article describes in detail the design and construction of a furnace for neutron scattering measurements of internal stress in engineering materials under mechanical load and in elevated temperature environments, designed to permit a range of gases to provide a non-oxidizing atmosphere for hot samples. © 2012 IOP Publishing LTD.
- ItemThe instrument suite of the European Spallation Source(Elsevier B. V., 2020-01-10) Andersen, KH; Argyriou, DN; Jackson, AJ; Houston, J; Henry, PF; Deen, PP; Toft-Petersen, R; Beran, P; Strobl, M; Arnold, T; Wacklin-Knecht, H; Vivanco, R; Parker, SF; Gussen, A; Kanaki, K; Scionti, G; Olsen, MA; Arai, M; Schmakat, Ph; Lechner, RE; Niedermayer, Ch; Schneider, H; Zanetti, M; Petrillo, C; Moreira, FY; Stepanyan, S; Luna, P; Calzada, E; Stahn, J; Voigt, J; Dupont, T; Hanslik, R; Siemers, DJ; Udby, L; Chowdhury, MAH; Klauser, Ch; Rouijaa, M; Lehmann, E; Heynen, A; Bustinduy, I; Schwaab, A; Raspino, D; Scatigno, C; del Moral, OG; Kiehn, R; Aprigliano, G; Zanatta, M; Huerta, M; Bellissima, S; Lerche, M; Holm-Dahlin, S; Huerta, M; Christensen, NB; Lohstroh, W; Gorini, G; Fenske, J; Hansen, UB; Klauser, C; Rodrigues, S; Müller, M; Gorini, G; Bovo, C; Hall-Wilton, R; Fabrèges, X; Siemers, DJ; Khaplanov, A; Tsapatsaris, N; Taylor, J; Christensen, M; Schefer, J; Woracek, R; Tozzi, P; Müller, M; Carlsen, H; Olsen, MA; Orecchini, A; Di Fresco, L; Paciaroni, A; Bovo, C; Magán, M; Hauback, BC; Elmer, J; Heenan, RK; Piscitelli, F; Masi, F; Bakedano, G; Klimko, S; De Bonis, A; Fedrigo, A; Lukáš, P; Frielinghaus, H; Stahn, J; Schweika, W; Markó, M; Pfeiffer, D; Kirstein, O; Di Fresco, L; Schreyer, A; Orszulik, A; Nowak, G; Butterweck, S; Šaroun, J; Paciaroni, A; Kolevatov, R; Lehmann, EH; Filges, U; Schreyer, A; Koenen, M; Bustinduy, I; Magán, M; Feygenson, M; Cooper, JFK; Abad, E; Senesi, R; Longeville, S; Llamas-Jansa, I; Schulz, M; Birk, JO; Sharp, M; Galsworthy, P; Šaroun, J; Martínez, J; Hiess, A; Holm-Dahlin, S; Filges, U; Pullen, SA; Guyon Le Bouffy, J; Schefer, J; Lukáš, P; Udby, L; Kozielewski, T; Niedermayer, C; Sacchetti, F; Hartl, M; Jaksch, S; Salhi, Z; Brückel, T; Aguilar, J; Aguilar, J; Seifert, M; Bordallo, HN; Robillard, T; Villacorta, FJ; Herranz, I; del Rosso, L; Hauback, BC; Orecchini, A; Fabrèges, G; Fenske, J; Neuhaus, J; Schillinger, B; Abad, E; Kittelmann, T; Lefmann, K; Seifert, M; Neuhaus, J; Herranz, I; Kolevatov, R; Annighöfer, B; Oksanen, E; Morgano, M; Laszlo, G; Freeman, PG; Kennedy, SJ; Bertelsen, M; Bellissima, S; Alba-Simionesco, C; Markó, M; Mezei, F; Chowdhury, M; Halcrow, W; Jestin, J; Lieutenant, K; Babcock, E; Rønnow, HM; Engels, R; del Moral, OG; Vickery, A; Rouijaa, M; Lavie, P; Petersson Årsköld, S; Glavic, A; Désert, S; Mannix, D; Scatigno, C; Petry, W; Christensen, NB; Violini, N; Villacorta, FJ; Porcher, F; Glavic, A; Scionti, G; Zanetti, M; Fernandez-Alonso, F; Rønnow, HM; Mosconi, M; Olsson, M; Stepanyan, S; Petrillo, C; del Rosso, L; Harbott, P; Sacchetti, F; Bertelsen, M; Kämmerling, H; Andreani, C; Schulz, M; Colognesi, D; Luna, P; Loaiza, L; Turner, D; Martínez, JL; Tartaglione, A; Sordo, F; Llamas-Jansa, I; Schmakat, P; Lechner, RE; Poqué, A; Fernandez-Alonso, F; Colognesi, D; Tartaglione, A; Morgano, M; Webb, N; Loaiza, L; Whitelegg, L; Petry, W; Iversen, K; Vivanco, R; Tozzi, P; Goukassov, A; Schillinger, B; Carlsen, H; Masi, F; Christensen, M; Nowak, G; Nightingale, J; Schütz, S; Lopez, CI; Langridge, S; Schütz, S; Nagy, G; Zanatta, M; Andreani, C; Lefmann, K; Lohstroh, W; Mosconi, M; Senesi, R; Stefanescu, I; Bakedano, G; Hagen, ME; Wischnewski, A; Bourges, P; Hansen, UB; De Bonis, A; Kiehn, R; Parker, SF; Iversen, K; Sordo, F; Freeman, PG; Birk, JO; Rodríguez, DM; Ansell, SAn overview is provided of the 15 neutron beam instruments making up the initial instrument suite of the European Spallation Source (ESS), and being made available to the neutron user community. The ESS neutron source consists of a high-power accelerator and target station, providing a unique long-pulse time structure of slow neutrons. The design considerations behind the time structure, moderator geometry and instrument layout are presented. The 15-instrument suite consists of two small-angle instruments, two reflectometers, an imaging beamline, two single-crystal diffractometers; one for macromolecular crystallography and one for magnetism, two powder diffractometers, and an engineering diffractometer, as well as an array of five inelastic instruments comprising two chopper spectrometers, an inverse-geometry single-crystal excitations spectrometer, an instrument for vibrational spectroscopy and a high-resolution backscattering spectrometer. The conceptual design, performance and scientific drivers of each of these instruments are described. All of the instruments are designed to provide breakthrough new scientific capability, not currently available at existing facilities, building on the inherent strengths of the ESS long-pulse neutron source of high flux, flexible resolution and large bandwidth. Each of them is predicted to provide world-leading performance at an accelerator power of 2 MW. This technical capability translates into a very broad range of scientific capabilities. The composition of the instrument suite has been chosen to maximise the breadth and depth of the scientific impact of the early years of the ESS, and provide a solid base for completion and further expansion of the facility. © 2020 The Authors. Published by Elsevier B.V. Open access article under the CC BY-NC-ND license.