Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  • Communities & Collections
  • All of ANSTO Publications Online
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Choi, CH"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    On the compression behavior of an austenitic Fe-18Mn-0.6C-1.5Al twinning-induced plasticity steel
    (Wiley, 2013-06-20) Peng, CT; Callaghan, MD; Li, HJ; Yan, K; Liss, KD; Ngo, TD; Mendis, PA; Choi, CH
    High manganese austenitic TWIP steels are of great potential in the field of transportation-related industries owing to their exceptional combination of strength and ductility. A series of compression experiments were conducted on a Fe–18Mn–0.6C–1.5Al alloy at various strain rates (from 1.0 × 10−2 to 6.4 × 103 s−1) and total strains (≈15 and ≈20%) with a Gleeble 3500 thermo-mechanical simulator and a Split Hopkinson Pressure Bar system. Under compressive deformation, results showed this alloy possessed excellent strain-hardening behavior, attributed to the occurrence of mechanical twinning during deformation. The prevailing deformation mechanism was observed to be twinning, which was substantiated by microstructural analyses, as well as phase identification and evolution of crystallographic texture. Copyright © 1999-2020 John Wiley & Sons, Inc.

ANSTO Publications Online software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback