Browsing by Author "Chesman, ASR"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemHydrogen Bonding of O-Ethylxanthate Compounds and Neutron Structural Determination of C–H···S Interactions(CSIRO Publishing, 2014-10-10) Macreadie, LK; Edwards, AJ; Chesman, ASR; Turner, DRA range of ethylxanthate (EtXn) salts, containing either protic or aprotic cations (guanidinium (1), methylammonium (2), dimethylammonium (3), trimethylammonium (4), tetramethylammonium (5), tetraethylammonium (6), and tetrapropylammonium (7)), have been synthesised and structurally characterised. The cations in these compounds differ in their degree of hydrogen-bonding ability, i.e. the number of donor groups, with significant structural consequences. Compounds 1–4 contain cations that are able to form N–H···S hydrogen bonds, with six, three, two, and one donor groups in 1–4 respectively. The number of donor atoms affects greatly the dimensionality of the hydrogen-bonding networks in the solid state. The structure of 1 has a 3-D hydrogen-bonding network, 2 and 3 form 2-D sheets and 1-D chains respectively, whereas the lone NH donor group in 4 has strong hydrogen bonding only within a discrete cation–anion pair. The tetraalkylammonium salts 5–7 have no strong hydrogen bonding, with only C–H···S and C–H···O interactions possible. To determine unambiguously the presence of such interactions, single-crystal Laue neutron diffraction data were obtained for compound 5, providing a fully anisotropic model, which can be used to rationalise potential close interactions in the other structures. The neutron structure of 5 confirms the existence of C–H···S hydrogen bonds, with the H···S distance falling well within the sum of the van der Waals radii of the atoms. The close-packing in 5–7 is mediated solely through these weak interactions, with the size of the cations influencing the structures. © CSIRO 1996-2020
- ItemIn situ formation of reactive sulfide precursors in the one-pot, multigram synthesis of Cu2ZnSnS4 nanocrystals(American Chemical Society, 2013-03-05) Chesman, ASR; van Embden, J; Duffy, NW; Webster, NAS; Jasieniak, JJHerein we outline a general one-pot method to produce large quantities of compositionally tunable, kesterite Cu2ZnSnS4 (CZTS) nanocrystals (NCs) through the decomposition of in situ generated metal sulfide precursors. This method uses air stable precursors and should be applicable to the synthesis of a range of metal sulfides. We examine the formation of the ligands, precursors, and particles in turn. Direct reaction of CS2 with the aliphatic primary amines and thiols that already constitute the reaction mixture is used to produce ligands in situ. Through the use of 1H and 13C nuclear magnetic resonance, Fourier transform infrared spectroscopy, and optical absorption spectroscopy, we elucidate the formation of the resulting oleyldithiocarbamate and dodecyltrithiocarbonate ligands. The decomposition of their corresponding metal complexes at temperatures of ∼100 °C yields nuclei with a size of 1–2 nm, with further growth facilitated by the decomposition of dodecanethiol. In this way the nucleation and growth stages of the reaction are decoupled, allowing for the generation of NCs at high concentrations. Using in situ X-ray diffraction, we monitor the evolution of our reactions, thus enabling a real-time glimpse into the formation of Cu2ZnSnS4 NCs. For completeness, the surface chemistry and the electronic structure of the resulting CZTS NCs are studied. © 2013, American Chemical Society.
- ItemNon-injection synthesis of Cu2ZnSnS4 nanocrystals using a binary precursor and ligand approach(Royal Society of Chemistry, 2012-11-23) Chesman, ASR; Duffy, NW; Peacock, S; Waddington, L; Webster, NAS; Jasieniak, JJWe present a non-injection, one-pot synthesis of kesterite Cu2ZnSnS4 (CZTS) nanocrystals (NCs) that allows for multi-gram yields with precise control of the NCs’ metal composition. This is enabled through the selective use of a binary sulfur precursor and ligand reaction mixture, which acts to decouple the nucleation and growth stages. © 2013, The Royal Society of Chemistry.