Browsing by Author "Chen, X"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemColossal zero-field-cooled exchange bias via tuning compensated ferrimagnetic in kagome metals(American Chemical Society, 2024-07-22) Zhou, H; Cao, Y; Khmelevskyi, S; Zhang, Q; Hu, S; Avdeev, M; Wang, CW; Zhou, R; Yu, C; Chen, X; Li, Q; Miao, J; Li, Q; Lin, K; Xing, XRExchange bias (EB) is a crucial property with widespread applications but particularly occurs by complex interfacial magnetic interactions after field cooling. To date, intrinsic zero-field-cooled EB (ZEB) has only emerged in a few bulk frustrated systems and their magnitudes remain small yet. Here, enabled by high temperature synthesis, we uncover a colossal ZEB field of 4.95 kOe via tuning compensated ferrimagnetism in a family of kagome metals, which is almost twice the magnitude of known materials. Atomic-scale structure, spin dynamics, and magnetic theory revealed that these compensated ferrimagnets originate from significant antiferromagnetic exchange interactions embedded in the holmium-iron ferrimagnetic matrix due to supersaturated preferential manganese doping. A random antiferromagnetic order of manganese sublattice sandwiched between ferromagnetic iron kagome bilayers accounts for such unconventional pinning. The outcome of the present study outlines disorder-induced giant bulk ZEB and coercivity in layered frustrated systems. © 2024 American Chemical Society.
- ItemPhytantriol-based cubosome formulation as an antimicrobial against Lipopolysaccharide-deficient gram-gegative bacteria(American Chemical Society, 2020-09-17) Lai, XF; Ding, Y; Wu, CM; Chen, X; Jiang, JH; Hsu, HY; Wang, Y; Le Brun, AP; Song, JN; Han, ML; Li, J; Shen, HHTreatment of multidrug-resistant (MDR) bacterial infections increasingly relies on last-line antibiotics, such as polymyxins, with the urgent need for discovery of new antimicrobials. Nanotechnology-based antimicrobials have gained significant importance to prevent the catastrophic emergence of MDR over the past decade. In this study, phytantriol-based nanoparticles, named cubosomes, were prepared and examined in vitro by minimum inhibitory concentration (MIC) and time-kill assays against Gram-negative bacteria: Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Phytantriol-based cubosomes were highly bactericidal against polymyxin-resistant, lipopolysaccharide (LPS)-deficient A. baumannii strains. Small-angle neutron scattering (SANS) was employed to understand the structural changes in biomimetic membranes that replicate the composition of these LPS-deficient strains upon treatment with cubosomes. Additionally, to further understand the membrane-cubosome interface, neutron reflectivity (NR) was used to investigate the interaction of cubosomes with model bacterial membranes on a solid support. These results reveal that cubosomes might be a new strategy for combating LPS-deficient Gram-negative pathogens. © 2020 American Chemical Society.
- ItemSubstrate-dependent arrangements of the subunits of the BAM complex determined by neutron reflectometry(Elsevier, 2021-09-01) Chen, X; Ding, Y; Bamert, RS; Le Brun, AP; Duff, AP; Wu, CM; Hsu, HY; Shiota, T; Lithgow, T; Shen, HHIn Gram-negative bacteria, the β-barrel assembly machinery (BAM) complex catalyses the assembly of β-barrel proteins into the outer membrane, and is composed of five subunits: BamA, BamB, BamC, BamD and BamE. Once assembled, - β-barrel proteins can be involved in various functions including uptake of nutrients, export of toxins and mediating host-pathogen interactions, but the precise mechanism by which these ubiquitous and often essential β-barrel proteins are assembled is yet to be established. In order to determine the relative positions of BAM subunits in the membrane environment we reconstituted each subunit into a biomimetic membrane, characterizing their interaction and structural changes by Quartz Crystal Microbalance with Dissipation monitoring (QCM-D) and neutron reflectometry. Our results suggested that the binding of BamE, or a BamDE dimer, to BamA induced conformational changes in the polypeptide transported-associated (POTRA) domains of BamA, but that BamB or BamD alone did not promote any such changes. As monitored by neutron reflectometry, addition of an unfolded substrate protein extended the length of POTRA domains further away from the membrane interface as part of the mechanism whereby the substrate protein was folded into the membrane. © 2021 Published by Elsevier B.V.
- ItemWater uptake of riparian plants in the lower Lhasa River Basin, South Tibetan Plateau using stable water isotopes(John Wiley & Sons, Inc, 2020-05-25) Rao, WB; Chen, X; Meredith, KT; Tan, HB; Gao, M; Liu, JTRiparian plants can adapt their water uptake strategies based on climatic and hydrological conditions within a river basin. The response of cold-alpine riparian trees to changes in water availability is poorly understood. The Lhasa River is a representative cold-alpine river in South Tibet and an under-studied environment. Therefore, a 96 km section of the lower Lhasa River was selected for a study on the water-use patterns of riparian plants. Plant water, soil water, groundwater and river water were measured at three sites for δ18O and δ2H values during the warm-wet and cold-dry periods in 2018. Soil profiles differed in isotope values between seasons and with the distance along the river. During the cold-dry period, the upper parts of the soil profiles were significantly affected by evaporation. During the warm-wet period, the soil profile was influenced by precipitation infiltration in the upper reaches of the study area and by various water sources in the lower reaches. Calculations using the IsoSource model indicated that the mature salix and birch trees (Salix cheilophila Schneid. and Betula platyphylla Suk.) accessed water from multiple sources during the cold-dry period, whereas they sourced more than 70% of their requirement from the upper 60–80 cm of the soil profile during the warm-wet period. The model indicated that the immature rose willow tree (Tamarix ramosissima Ledeb) accessed 66% of its water from the surface soil during the cold-dry period, but used the deeper layers during the warm-wet period. The plant type was not the dominant factor driving water uptake patterns in mature plants. Our findings can contribute to strategies for the sustainable development of cold-alpine riparian ecosystems. It is recommended that reducing plantation density and collocating plants with different rooting depths would be conducive to optimal plant growth in this environment. © 2020 John Wiley & Sons Ltd