Browsing by Author "Chen, W"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemNASICON-type air-stable and all-climate cathode for sodium-ion batteries with low cost and high-power density(Springer Nature, 2019-04-01) Chen, MZA; Hua, WB; Xiao, Jin; Cortie, DL; Chen, W; Wang, E; Hu, Z; Gu, QF; Wang, XL; Indris, S; Chou, SL; Dou, SXThe development of low-cost and long-lasting all-climate cathode materials for the sodium ion battery has been one of the key issues for the success of large-scale energy storage. One option is the utilization of earth-abundant elements such as iron. Here, we synthesize a NASICON-type tuneable Na4Fe3(PO4)2(P2O7)/C nanocomposite which shows both excellent rate performance and outstanding cycling stability over more than 4400 cycles. Its air stability and all-climate properties are investigated, and its potential as the sodium host in full cells has been studied. A remarkably low volume change of 4.0% is observed. Its high sodium diffusion coefficient has been measured and analysed via first-principles calculations, and its three-dimensional sodium ion diffusion pathways are identified. Our results indicate that this low-cost and environmentally friendly Na4Fe3(PO4)2(P2O7)/C nanocomposite could be a competitive candidate material for sodium ion batteries. - © Open Access This article is licensed under a Creative Commons Attribution 4.0
- ItemSize‐dependent penetration of nanoparticles in tumor spheroids: a multidimensional and quantitative study of transcellular and paracellular pathways(Wiley, 2023-10-11) Chen, W; Wang, WQ; Xie, Z; Centurion, F; Sun, B; Paterson, DJ; Tsao, SCH; Chu, D; Shen, Y; Mao, G; Gu, ZTumor penetration of nanoparticles is crucial in nanomedicine, but the mechanisms of tumor penetration are poorly understood. This work presents a multidimensional, quantitative approach to investigate the tissue penetration behavior of nanoparticles, with focuses on the particle size effect on penetration pathways, in an MDA‐MB‐231 tumor spheroid model using a combination of spectrometry, microscopy, and synchrotron beamline techniques. Quasi‐spherical gold nanoparticles of different sizes are synthesized and incubated with 2D and 3D MDA‐MB‐231 cells and spheroids with or without an energy‐dependent cell uptake inhibitor. The distribution and penetration pathways of nanoparticles in spheroids are visualized and quantified by inductively coupled plasma mass spectrometry, two‐photon microscopy, and synchrotron X‐ray fluorescence microscopy. The results reveal that 15 nm nanoparticles penetrate spheroids mainly through an energy‐independent transcellular pathway, while 60 nm nanoparticles penetrate primarily through an energy‐dependent transcellular pathway. Meanwhile, 22 nm nanoparticles penetrate through both transcellular and paracellular pathways and they demonstrate the greatest penetration ability in comparison to other two sizes. The multidimensional analytical methodology developed through this work offers a generalizable approach to quantitatively study the tissue penetration of nanoparticles, and the results provide important insights into the designs of nanoparticles with high accumulation at a target site. ©2023 The Authors. Small published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.