Browsing by Author "Chen, PS"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemCorrelating uncompensated antiferromagnetic moments and exchange coupling interactions in interface ion-beam bombarded Co90Fe10/CoFe-oxide bilayers(IOP Publishing LTD, 2012-11-01) Shueh, C; Chen, PS; Cortie, DL; Klose, F; Chen, WC; Wu, TH; van Lierop, J; Lin, KWThe coercivity and exchange bias field of ferro-/antiferromagnetic Co(90)Fe(10)/CoFe-oxide bilayers were studied as function of the surface morphology of the bottom CoFe-oxide layer. The CoFe-oxide surface structure was varied systematically by low energy (0-70 V) Argon ion-beam bombardment before subsequent deposition of the Co(90)Fe(10) layer. Transmission electron microscopy results showed that the bilayer consisted of hcp Co(90)Fe(10) and rock-salt CoFe-oxide. At low temperatures, enhanced coercivities and exchange bias fields with increasing ion-beam bombardment energy were observed, which are attributed to defects and uncompensated moments created near the CoFe-oxide surface in increasing amounts with larger ion-beam bombardment energies. Magnetometry results also showed an increasing divergence of the low field temperature dependent magnetization [Delta M(T)] between field-cooling and zero-field-cooling processes, and an increasing blocking temperature with increasing ion-beam bombardment energy. © 2012 IOP Publishing LTD.
- ItemEnhancement of the magnetic interfacial exchange energy at a specific interface in NiFe/CoO/Co trilayer thin films via ion-beam modification(AIP Scitation, 2014-01-01) Cortie, DL; Ting, YW; Chen, PS; Tan, X; Lin, KW; Klose, FA series of ferromagnetic Ni 80Fe20(55 nm)/antiferromagnetic CoO (25 to 200 nm)/ferromagnetic Co (55 nm)/SiO2(substrate) trilayer thin films were fabricated by ion-beam assisted deposition in order to understand the role of ion beam modification on the interfacial and interlayer coupling. The microstructural study using transmission electron microscopy, X-ray reflectometry, and polarised neutron reflectometry showed that ion-beam modification during the deposition process led to an oxygen-rich Co/CoO nanocomposite interface region at the bottom layer. This interface caused a high exchange bias field for the ferromagnetic cobalt. However, the exchange bias for top permalloy ferromagnet remained low, in line with expectations from the literature for the typical interfacial energy. This suggest that the ion-beam enhancement of the magnetic exchange bias is localized to the Co/CoO interface where local microstructural effects provide the dominant mechanism. © 2020 AIP Publishing LLC