Browsing by Author "Caffee, M"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemCarbonate and silicate intercomparison materials for cosmogenic 36Cl measurements(Elsevier, 2019-09-15) Mechernich, S; Dunai, TJ; Binnie, SA; Goral, T; Heinze, S; Dewald, A; Schimmelpfennig, I; Keddadouche, K; Aumaître, G; Bourlès, D; Marrero, S; Wilcken, KM; Simon, KJ; Fink, D; Phillips, FM; Caffee, M; Gregory, LC; Phillips, R; Freeman, SPHT; Shanks, R; Sarikaya, MA; Pavetich, S; Rugel, G; Merchel, S; Akçar, N; Yesilyurt, S; Ivy-Ochs, S; Vockenhuber, CTwo natural mineral separates, labeled CoCal-N and CoFsp-N, have been prepared to serve as intercomparison material (ICM) for in situ-produced cosmogenic 36Cl and natural chlorine (Clnat) analysis. The sample CoCal-N is derived from calcite crystals in a Namibian lag deposit, while the sample CoFsp-N is derived from a single crystal of alkali-feldspar from a Namibian pegmatite. The sample preparation took place at the University of Cologne and a rotating splitter was used to obtain homogeneous splits of both ICMs. Forty-five measurements of CoCal-N (between 1 and 16 per facility) and forty-four measurements of CoFsp-N (between 2 and 20 per facility) have been undertaken by ten target preparation laboratories measured by seven different AMS facilities. The internal laboratory scatter of the 36Cl concentrations indicates no overdispersion for half of the laboratories and 3.9 to 7.3% (1σ) overdispersion for the others. We show that the CoCal-N and CoFsp-N splits are homogeneous regarding their 36Cl and Clnat concentrations. The grand average (average calculated from the average of each laboratory) yields initial consensus 36Cl concentrations of (3.74 ± 0.10) × 106 at 36Cl/g (CoCal-N) and (2.93 ± 0.07) × 106 at 36Cl/g (CoFsp-N) at 95% confidence intervals. The coefficient of variation is 5.1% and 4.2% for CoCal-N and CoFsp-N, respectively. The Clnat concentration corresponds to the lower and intermediate range of typical rock samples with (0.73 ± 0.18) µg/g in CoCal-N and (73.9 ± 6.8) µg/g in CoFsp-N. We discuss the most relevant points of the sample preparation and measurement and the chlorine concentration calculation to further approach inter-laboratory comparability. We propose to use continuous measurements of the ICMs to provide a valuable quality control for future determination of 36Cl and Clnat concentrations. © 2019 Elsevier B.V.
- ItemDeciphering the cosmogenic code to learn Earth’s surface history(American Geophysical Union, 2016-11-28) Stroeven, AP; Fink, D; Caffee, MGalactic cosmic rays continually bombard Earth’s upper atmosphere, causing a cascade of secondary particle fluxes. The more energetic components of this particle cascade penetrate the atmosphere and interact with the nuclear building blocks within the minerals that compose the rocks on Earth’s surface, producing a wide variety of secondary nuclides.Text © 2016. The authors. CC BY-NC-ND 3.0
- ItemIce sheet erosion patterns in valley systems in northern Sweden investigated using cosmogenic nuclides(Wiley, 2005-08-30) Li, YK; Harbor, J; Stroeven, AP; Fabel, D; Kleman, J; Fink, D; Caffee, M; Elmore, DErosion patterns associated with glaciation of trunk and hanging valley systems in northern Sweden were investigated using cosmogenic nuclide 10Be apparent exposure ages and inferred nuclide inheritance. Sequences of samples taken across valleys known to have been covered repeatedly by the Fennoscandian ice sheet revealed two primary patterns of erosion. In Vávlávágge the exposure age pattern is consistent with >2 m of glacial erosion during the last glacial cycle along the entire profile. At Rávtasvággi, Dievssavággi and Alisvággi, exposure ages in the valley bottom contrast with apparent exposure ages two to four times older on the valley sides. The older ages on the valley sides reflect cosmogenic nuclide inheritance due to limited (<2 m) bedrock erosion of the valley sides during the last glacial cycle. The pattern and scale of erosion in these valleys indicates that glacial valley formation is a result of multiple glacial cycles rather than the result of topographic modification during a single glacial cycle. Initial data comparing hanging valley and trunk valley sites do not show distinct differences in apparent exposure ages. Slightly older ages for samples from hanging valley bottoms may suggest nuclide inheritance indicating lower erosion than in trunk valley bottoms, as would be expected given the marked topographic step between hanging and trunk valleys. Although quantifying the amount of erosion depends on the assumed cosmogenic nuclide inheritance prior to the onset of erosion, the pattern of erosion is independent of this. Hence the observed pattern of cosmogenic nuclide concentrations provides constraints on spatial patterns of erosion and helps to refine understanding of the timing and extent of landform modification by glaciation. Copyright © 2005 John Wiley & Sons, Ltd.
- ItemImportance of sampling across an assemblage of glacial landforms for interpreting cosmogenic ages of deglaciation(Academic Press INC Elsevier, 2011-07-01) Stroeven, AP; Fabel, D; Harbor, J; Fink, D; Caffee, M; Dahlgren, TDeglaciation chronologies for some sectors of former ice sheets are relatively poorly constrained because of the paucity of features or materials traditionally used to constrain the timing of deglaciation. In areas without good deglaciation varve chronologies and/or without widespread occurrence of material that indicates the start of earliest organic radiocarbon accumulations suitable for radiocarbon dating, typically only general patterns and chronologies of deglaciation have been deduced. However, mid-latitude ice sheets that had warm-based conditions close to their margins often produced distinctive deglaciation landform assemblages, including eskers, deltas, meltwater channels and aligned lineation systems. Because these features were formed or significantly altered during the last glaciation, boulder or bedrock samples from them have the potential to yield reliable deglaciation ages using terrestrial cosmogenic nuclides (TCN) for exposure age dating. Here we present the results of a methodological study designed to examine the consistency of TCN-based deglaciation ages from a range of deglaciation landforms at a site in northern Norway. The strong coherence between exposure ages across several landforms indicates great potential for using TCN techniques on features such as eskers, deltas and meltwater channels to enhance the temporal resolution of ice-sheet deglaciation chronologies over a range of spatial scales. (C) 2011 University of Washington.