Browsing by Author "Brand, HEA"
Now showing 1 - 20 of 108
Results Per Page
Sort Options
- Item3D transition metal ordering and Rietveld stacking fault quantification in the new oxychalcogenides La2O2Cu2–4xCd2xSe2(American Chemical Society, 2016-04-04) Ainsworth, CM; Lewis, JW; Wang, CH; Coelho, AA; Johnston, HE; Brand, HEA; Evans, JSOA number of LnOCuCh (Ln = La-Nd, Bi; Ch = S, Se, Te) compounds have been reported in the literature built from alternating layers of fluorite-like [Ln2O2]2+ sheets and antifluorite-like [M2Se2]2- sheets, where M is in the +1 oxidation state leading to full occupancy of available MSe4/2 tetrahedral sites. There is also a family of related LnOM0.5Se (Ln = La & Ce, M = Fe, Zn, Mn & Cd) compounds built from alternating layers of [Ln2O2]2+ sheets and [MSe2]2- sheets, where M is in the +2 oxidation state with half occupancy of available tetrahedral sites and complex ordering schemes in two dimensions. This paper reports a new family of compounds containing both +1 and +2 metal ions in the La2O2Cu2-4xCd2xSe2 family. We show how Cu1+ and Cd2+ ions segregate into distinct fully occupied and half occupied checkerboard-like layers respectively, leading to complex long-range superstructures in the third (stacking) dimension. To understand the structure and microstructure of these new materials we have developed and implemented a new methodology for studying low and high probability stacking faults using a Rietveld-compatible supercell approach capable of analyzing systems with thousands of layers. We believe this method will be widely applicable. © 2016 American Chemical Society.
- Item40th Annual Condensed Matter and Materials Meeting, Charles Sturt University, Wagga Wagga, NSW, 2nd February – 5th February, 2016(Australian Institute of Physics, 2016-02-02) Tadich, A; Brand, HEA; Appadoo, D; Finlayson, TR; James, MThe 40th Annual Condensed Matter and Materials Meeting was held at Charles Sturt University, Wagga Wagga, NSW from 2 - 5 February, 2016. There were 116 attendees, including international visitors from Scotland, China, Taiwan and New Zealand. A total of 10 invited and 29 contributed oral papers were presented during the two and one half days of scientific sessions. There were also two sessions with a total of 70 poster presentations. All presenters were invited to submit a manuscript (six pages for invited papers and four for contributed papers) for publication in the conference proceedings. Each manuscript was refereed by at least two anonymous reviewers who worked to a set of guidelines made available by the editor. Each accepted publication therefore satisfies the requirements for classification as a refereed conference publication (E1). The organizers would like to thank the reviewers for their time and effort in reviewing manuscripts, which resulted in 10 papers being accepted for publication.
- ItemThe Allende Meteorite: a case study for all the family?(Universities Space Research Association, 2016-03-24) Brand, HEA; Martin, DIntroduction: The Allende meteorite is the most studied meteorite, possibly the most studied rock assemblage, in the world. The meteorite has an extremely well documented history and relatively large, gram-sized samples can be obtained easily for relatively low cost. The heterogeneity of the meteorite lends itself to study by many different techniques as is evidenced by the wealth of high-quality publications produced on a range of topics. Indeed, the Allende meteorite has an enviable h-index of 124, with more than 68,240 citations*. The broad reach of this sample, together with preexisting data from many documented studies, makes the Allende meteorite an excellent example sample with which to showcase the capabilities of a suite of complementary instruments such as those found at a large central facility; in this case the Australian Synchrotron. It also provides opportunity for the development of a number of outreach tools targeted at particular stakeholder groups at different technical skill levels. These can be integrated with online platforms and social media tools to find a wider audience and become an educational resource for the broader community. At present the resources are under development specifically with respect to the Australian Synchrotron and this contribution is aimed at raising awareness and garnering support, suggestions and expertise from the planetary science community to help this project grow beyond the facility.
- ItemAluminum borohydride complex with ethylenediamine: crystal structure and dehydrogenation mechanism studies(American Chemical Society, 2016-04-20) Gu, QF; Wang, ZY; Filinchuk, Y; Kimpton, JA; Brand, HEA; Li, Q; Yu, XBWe report the structure of an aluminum borohydride ethylenediamine complex, Al(EDA)3·3BH4·EDA. This structure was successfully determined using X-ray powder diffraction and was supported by first-principles calculations. The complex can be described as a mononuclear complex exhibiting three-dimensional supramolecular structure, built from units of Al[C2N2H8]3, BH4, and ethylenediamine (EDA) molecules. Examination of the chemical bonding indicates that this arrangement is stabilized via dihydrogen bonding between the NH2 ligand in EDA and the surrounding BH4. The partial ionic bonding between the Al and N atoms in EDA forms a five-member ring (5MR), an Al[NCCN] unit. The calculated H2 removal energies confirm that it is energetically favorable to remove the loosely bonded EDA and H atoms with N–H···H–B dihydrogen bonds upon heating. Our results suggest that the NH2 terminal ligand in the EDA molecule combines with a H atom in the BH4 group to release H2 at elevated temperature, and our results confirm that the experimental result Al(EDA)3·3BH4·EDA can release 8.4 wt % hydrogen above 149 °C with detectable EDA molecules. This work provides insights into the dehydrogenation behavior of Al(EDA)3·3BH4·EDA and has implications for future development of promising high-performance metal borohydride ethylenediamine complexes. © 2016 American Chemical Society
- ItemAnalytical techniques for probing small-scale layers that preserve information on gas–solid interactions(Mineralogical Society of America, 2018-11-01) Dalby, KN; Berger, JA; Brand, HEA; Cairney, JM; Eder, K; Eggins, SM; Herring, A; Hervig, RL; Kreider, PB; Mernagh, TB; Palm, AB; Renggli, CJ; Troitzsch, U; Yue, L; King, PLIt has been 23 years (as we type) since Carroll and Holloway published the “Volatiles in Magmas” MSA volume (Carroll and Holloway 1994). The 1994 volume dealt with how to safely sample high-temperature gases and analytical methods for volatiles in glasses, which included secondary ion mass spectroscopy and vibrational spectroscopy. Since that time, some things have changed, and some have remained the same. There is still a disconnect between laboratory models of high-temperature gas–solid processes and field observations (Cashman et al. 2017), but we are starting to close that gap with rapid advances in technology. © 2018 Mineralogical Society of America
- ItemAnatomy of a complex mineral replacement reaction: Role of aqueous redox, mineral nucleation, and ion transport properties revealed by an in-situ study of the replacement of chalcopyrite by copper sulfides(Elsevier, 2021-10-20) Chaudhari, A; Webster, NAS; Xia, F; Frierdich, AJ; Ram, R; Etschmann, BE; Liu, WH; Wykes, JL; Brand, HEA; Brugger, JThe fluid-driven transformation of chalcopyrite (CuFeS2) into Cu-rich sulfides (e.g., digenite, Cu1.8S; covellite, CuS; and chalcocite, Cu2S) is a complex mineral replacement reaction where the reaction pathway is controlled by the interplay between evolving mineral make-up, texture/porosity, and solution chemistry. This trans-formation was investigated in CuCl2 +H2SO4 solutions under mild hydrothermal conditions (180 to 300 ◦C); the reaction kinetics, nature of minerals formed, and oxidation states of aqueous Fe and Cu were followed in-situ in real-time using synchrotron powder X-ray diffraction (PXRD) and X-ray absorption spectroscopy (XAS). These results are corroborated by an analysis of the textures of reaction products from comparative ex-situ quench experiments. The in-situ and ex-situ experiments revealed that: (i) aqueous Cu2+quickly reduced to Cu+ during chalcopyrite replacement in all experiments, and Fe dissolved as Fe2+; (ii) covellite was the first mineral to form, followed by digenite-high with delayed nucleation; and (iii) a non-quenchable hydrated Fe sulfate mineral (szomolnokite, FeSO4.H2O) formed at 240 ◦C at relatively low concentrations of added CuCl2, which supressed the formation of digenite-high. The quantitative mineral phase evolution retrieved using in-situ PXRD was modelled using a novel dual power law (dual Avrami approach). Avrami exponents revealed that chalcopyrite replacement proceeded initially via a 3-dimensional growth mechanism, followed by diffusion-controlled growth. This is consistent with initial formation of a porous covellite rim around chalcopyrite, confirmed by the observation of the ex-situ reaction products, followed by a second reaction stage where the transport properties of aqueous Fe (released from the chalcopyrite) and aqueous Cu (added from the initial solution) to and from the reaction front become the rate-limiting step; and these two kinetic stages exist even where covellite was the only replacement product. The activation energies calculated for these two kinetic stages were 42.9 ±7.4 kJ mol −1 and 39.3 ± 13.1 kJ mol−1, respectively. We conclude that (i) the replacement of chalcopyrite by covellite and digenite proceeds via an interface coupled dissolution and reprecipitation mechanism; (ii) availabilities of aqueous Cu+ and of Fe2+ play a critical role in covellite nucleation and on the sequence of mineral precipitation during chalcopyrite replacement; the Cu+ to Cu2+ ratio is controlled by the kinetics of Cu2+ to Cu+ reduction, which increases with increasing temperature, and by the transport of Cu2+ through the daughter mineral to the reaction front, while Fe2+ availability is limited at high temperature by the formation of insoluble ferrous sulfate; and (iii) this reaction evolves from a bulk fluid-chemistry controlled reaction (initial formation of covellite) to an interface-controlled reaction (digenite-high or further transformation to covellite). The current findings highlight the complex feedback between Cu2+/Cu+ aqueous redox, mineral nucleation, and ion transport properties during replacement reactions, and the applicability of combined in-situ PXRD and XAS techniques in deciphering complex fluid-driven mineral replacement reactions. © 2021 Elsevier B.V
- ItemAncient micrometeorites suggestive of an oxygen-rich Archaean upper atmosphere(Springer Nature, 2016-05-11) Tompkins, AG; Bowlt, L; Genge, M; Wilson, SA; Brand, HEA; Wykes, JLIt is widely accepted that Earth’s early atmosphere contained less than 0.001 per cent of the present-day atmospheric oxygen (O2) level, until the Great Oxidation Event resulted in a major rise in O2 concentration about 2.4 billion years ago1. There are multiple lines of evidence for low O2 concentrations on early Earth, but all previous observations relate to the composition of the lower atmosphere2 in the Archaean era; to date no method has been developed to sample the Archaean upper atmosphere. We have extracted fossil micrometeorites from limestone sedimentary rock that had accumulated slowly 2.7 billion years ago before being preserved in Australia’s Pilbara region. We propose that these micrometeorites formed when sand-sized particles entered Earth’s atmosphere and melted at altitudes of about 75 to 90 kilometres (given an atmospheric density similar to that of today3). Here we show that the FeNi metal in the resulting cosmic spherules was oxidized while molten, and quench-crystallized to form spheres of interlocking dendritic crystals primarily of magnetite (Fe3O4), with wüstite (FeO)+metal preserved in a few particles. Our model of atmospheric micrometeorite oxidation suggests that Archaean upper-atmosphere oxygen concentrations may have been close to those of the present-day Earth, and that the ratio of oxygen to carbon monoxide was sufficiently high to prevent noticeable inhibition of oxidation by carbon monoxide. The anomalous sulfur isotope (Δ33S) signature of pyrite (FeS2) in seafloor sediments from this period, which requires an anoxic surface environment4, implies that there may have been minimal mixing between the upper and lower atmosphere during the Archaean. © 2016 Macmillan Publishers Limited
- ItemThe Australian Synchrotron in the international Year of Crystallography(Australian Institute of Physics, 2014-09-01) James, M; Brand, HEA; Panjikar, SThe Australian Synchrotron has been providing world quality X-ray diffraction instrumentation and expertise to the scientific community via the Powder Diffraction and two Macromolecular Crystallography beamlines since 2007. These capabilities reach across the scientific landscape from studies of advanced materials for applications such as electronics displays and new energy technologies, to development of new pharmaceuticals, studies of disease and other fundamental biological processes. © 2014 Australian Institute of Physics Inc.
- ItemAverage and local ordering of Yb2(Ti2-xYbx)O7-x/2 ‘stuffed’ pyrochlores: the development of a robust structural model(Elsevier, 2021-10-01) Mullens, BG; Zhang, Z; Avdeev, M; Brand, HEA; Cowie, BCC; D'Angelo, AM; Múzquiz, MS; Kennedy, BJThe long-range (average) and short-range (local) structures in the Yb2(Ti2-xYbx)O7-x/2 (x = 0.00–0.67) series were studied using a combination of diffraction and spectroscopic techniques. The average structure, established from synchrotron X-ray and neutron powder diffraction data, shows the development of multiphase regions from x = 0.134 and the formation of anti-site disorder from x = 0.335. The local structure, established from X-ray absorption near-edge structure (XANES), shows a gradual evolution of short-range disorder. The crystal field splitting energy of the Ti4+ ions decreases from 2.15 to 1.91 eV with increasing Yb3+ content, reflecting the increase in coordination number from 6 to predominantly 7. Electrochemical impedance spectroscopic studies show an increase in oxygen ionic conductivity by almost a factor of 3 upon doping with small amounts of Yb3+ (x = 0.067). These results imply that the disordering across the anion and cation sublattices are different and inducing small amounts of disorder into the pyrochlore structure may lead to applications in solid-oxide fuel cells. © 2021 Elsevier Inc.
- ItemBeyond the ionic radii: A multifaceted approach to understand differences between the structures of LnNbO4 and LnTaO4 fergusonites(Elsevier, 2023-01-05) Mullens, BG; Saura-Múzquiz, M; Marlton, FP; Avdeev, M; Brand, HEA; Mondal, S; Vaitheeswaran, G; Kennedy, BJSynchrotron X-ray powder diffraction methods have been used to obtain accurate structures of the lanthanoid tantalates, LnTaO4, at room temperature. Three different structures are observed, depending on the size of the Ln cation: P21/c (Ln = La, Pr), I2/a (Ln = Nd-Ho), and P2/c (Ln = Tb-Lu). BVS analysis indicated that TaV is six-coordinate in these structures, with four short bonds and two longer bonds. Synchrotron X-ray powder diffraction methods were also used to observe the impact of Ta doping on the orthoniobates, Ln(Nb1-xTax)O4 (Ln = Pr, Nd, Sm, Gd, Tb, Dy, Ho, Yb, and Lu). Where both the niobate and tantalate oxide were isostructural (fergusonite structure, space group I2/a), complete solid solutions were prepared. In these solid solutions, the unit cell volume decreases as the Ta content increases. The subtle interaction evident between the LnO8 and BO6 sublattices in the fergusonite-type oxides was not observed in the related pyrochlore oxides. A combined synchrotron X-ray and neutron powder diffraction study of the series Ho(Nb1-xTax)O4 was used to determine accurate atomic positions of the anions, and hence, bond lengths. This revealed a change in the (Nb/Ta)-O bond lengths, reflective of the difference in the valence orbitals of Nb(4d) and Ta(5d). Examination of the partial density of states demonstrates differences in the electronics between Nb and Ta, leading to a difference in the bandgap. This study highlights the importance of the long B-O contacts in the fergusonite structures, and its potential impact on the I2/a to I41/a phase transition. © 2022 Elsevier B.V.
- ItemBiphasic P2/O3-Na2/3Li0.18Mn0.8Fe0.2O2: a structural investigation(Royal Society of Chemistry, 2020-12-22) Stansby, JH; Avdeev, M; Brand, HEA; Gonzalo, E; Drewett, NE; Ortiz-Vitoriano, N; Sharma, N; Rojo, TThe P2/O3 layered oxide system is thought to benefit from a synergistic enhancement, resulting from the presence of both phases, which makes it a promising cathode material for Na-ion battery applications. Here, biphasic P2/O3-Na2/3Li0.18Mn0.8Fe0.2O2 is investigated via a combination of neutron and X-ray scattering techniques. Neutron diffraction data indicates that the O3 alkali metal site is fully occupied by Li. Real time operando X-ray diffraction data shows the structural evolution of the composite electrode – at the charged state there is no evidence of O2, OP4 or Z phases. The results presented herein provide new insight into site preference of Li in biphasic materials and highlights the value of utilizing multiple phases to achieve high performance layered cathode materials for sodium battery applications.© The Royal Society of Chemistry 2021
- ItemBulachite, [Al6(AsO4)3(OH)9(H2O)4]⋅2H2O from Cap Garonne, France: crystal structure and formation from a higher hydrate(Cambridge University Press, 2020-06-30) Grey, IE; Yoruk, E; Kodjikian, S; Klein, H; Bougerol, C; Brand, HEA; Bordet, P; Mumme, WG; Favreau, G; Mills, SJBulachite specimens from Cap Garonne, France, comprise two intimately mixed hydrated aluminium arsenate minerals with the same Al:As ratio of 2:1 and with different water contents. The crystal structures of both minerals have been solved using data from low-dose electron diffraction tomography combined with synchrotron powder X-ray diffraction. One of the minerals has the same powder X-ray diffraction pattern (PXRD) as for published bulachite. It has orthorhombic symmetry, space group Pnma with unit-cell parameters a = 15.3994(3), b = 17.6598(3), c = 7.8083(1) Å and Z = 4, with the formula [Al6(AsO4)3(OH)9(H2O)4]·2H2O. The second mineral is a higher hydrate with composition [Al6(AsO4)3(OH)9(H2O)4]·8H2O. It has the same Pnma space group and unit-cell parameters a = 19.855(4), b = 17.6933(11) and c = 7.7799(5) Å i.e. almost the same b and c parameters but a much larger a parameter. The structures are based on polyhedral layers, parallel to (100), of composition [Al6(AsO4)3(OH)9(H2O)4] and with H-bonded H2O between the layers. The layers contain [001] spiral chains of edge-shared octahedra, decorated with corner connected AsO4 tetrahedra that are the same as in the mineral liskeardite. The spiral chains are joined together by octahedral edge-sharing to form layers parallel to (100). Synchrotron PXRD patterns collected at different temperatures during heating of the specimen show that the higher-hydrate mineral starts transforming to bulachite when heated to 50°C, and the transformation is complete between 75 and 100°C. © 2020 The Mineralogical Society of Great Britain and Ireland .
- ItemCharacterising new planetary materials with neutron diffraction(Australian Institute of Nuclear Science and Engineering, 2016-11-29) Maynard-Casely, HE; Brand, HEA; Cable, ML; Hodyss, RPThere’s a lot of hydrogen in the outer solar system; locked up with water on the icy Galilean moons of Jupiter, within the small organic molecules that rain down on Saturn’s moons Titan or even in an elusive metallic form within the centers of the gas giants. The intrinsic hydrogen-domination of planetary ices, makes studying these materials with laboratory powder diffraction very challenging. Insights into their crystalline phase behavior and the extraction of a number of thermal and mechanical properties is often only accessible with high-flux synchrotron x-ray diffraction or with neutron diffraction. Here, we will present how both the ECHIDNA and WOMBAT instruments at ACNS have been used to gain insights into new materials that have be found to exist under planetary conditions.
- ItemCompeting magnetic interactions and the role of unpaired 4f llectrons in oxygen-deficient perovskites Ba3RFe2O7.5 (R = Y, Dy)(American Chemical Society (ACS), 2023-05-01) Brown, AJ; Avdeev, M; Manjón-Sanz, A; Brand, HEA; Ling, CDOxygen-deficient perovskite compounds with the general formula Ba3RFe2O7.5 present a good opportunity to study competing magnetic interactions between Fe3+ 3d cations with and without the involvement of unpaired 4f electrons on R3+ cations. From analysis of neutron powder diffraction data, complemented by ab initio density functional theory calculations, we determined the magnetic ground states when R3+ = Y3+ (non-magnetic) and Dy3+ (4f9). They both adopt complex long-range ordered antiferromagnetic structures below TN = 6.6 and 14.5 K, respectively, with the same magnetic space group Ca2/c (BNS #15.91). However, the dominant influence of f-electron magnetism is clear in temperature dependence and differences between the size of the ordered moments on the two crystallographically independent Fe sites, one of which is enhanced by R-O-Fe superexchange in the Dy compound, while the other is frustrated by it. The Dy compound also shows evidence for temperature- and field-dependent transitions with hysteresis, indicating a field-induced ferromagnetic component below TN. © 2024 American Chemical Society
- ItemThe competition between metastable and equilibrium S (Al2CuMg) phase during the decomposition of Al-Cu-Mg alloys(Elsevier, 2015-10-01) Styles, MJ; Marceau, RKW; Bastow, TJ; Brand, HEA; Gibson, MA; Hutchinson, CRThe decomposition sequence of the supersaturated solid solution leading to the formation of the equilibrium S (Al2CuMg) phase in Alsingle bondCusingle bondMg alloys has long been the subject of ambiguity and debate. Recent high-resolution synchrotron powder diffraction experiments have shown that the decomposition sequence does involve a metastable variant of the S phase (denoted S1), which has lattice parameters that are distinctly different to those of the equilibrium S phase (denoted S2). In this paper, the difference between these two phases is resolved using high-resolution synchrotron and neutron powder diffraction and atom probe tomography, and the transformation from S1 to S2 is characterised in detail by in situ synchrotron powder diffraction. The results of these experiments confirm that there are no significant differences between the crystal structures of S1 and S2, however, the powder diffraction and atom probe measurements both indicate that the S1 phase forms with a slight deficiency in Cu. The in situ isothermal aging experiments show that S1 forms rapidly, reaching its maximum concentration in only a few minutes at high temperatures, while complete conversion to the S2 phase can take thousands of hours at low temperature. The kinetics of S phase precipitation have been quantitatively analysed for the first time and it is shown that S1 phase forms with an average activation energy of 75 kJ/mol, which is much lower than the activation energy for Cu and Mg diffusion in an Al matrix (136 kJ/mol and 131 kJ/mol, respectively). The mechanism of the replacement of S1 with the equilibrium S2 phase is discussed. © Crown Copyright 2015 Published by Elsevier Ltd. on behalf of Acta Materialia Inc.
- ItemA comprehensive picture of the current rate dependence of the structural evolution of P2-Na2/3Fe2/3Mn1/3O2(Royal Society of Chemistry, 2015-09-02) Sharma, N; Han, MH; Pramudita, JC; Gonzalo, E; Brand, HEA; Rojo, TCathodes that feature a layered structure are attractive reversible sodium hosts for ambient temperature sodium-ion batteries which may meet the demands for large-scale energy storage devices. However, crystallographic data on these electrodes are limited to equilibrium or quasi-equilibrium information. Here we report the current-dependent structural evolution of the P2-Na2/3Fe2/3Mn1/3O2 electrode during charge/discharge at different current rates. The structural evolution is highly dependent on the current rate used, e.g., there is significant disorder in the layered structure near the charged state at slower rates and following the cessation of high-current rate cycling. At moderate and high rates this disordered structure does not appear. In addition, at the slower rates the disordered structure persists during subsequent discharge. In all rates examined, we show the presence of an additional two-phase region that has not been observed before, where both phases maintain P63/mmc symmetry but with varying sodium contents. Notably, most of the charge at each current rate is transferred via P2 (P63/mmc) phases with varying sodium contents. This illustrates that the high-rate performance of these electrodes is in part due to the preservation of the P2 structure and the disordered phases appear predominantly at lower rates. Such current-dependent structural information is critical to understand how electrodes function in batteries which can be used to develop optimised charge/discharge routines and better materials. © 2015 The Royal Society of Chemistry. This article is Open Access.
- ItemControlling oxygen defect formation and its effect on reversible symmetry lowering and disorder-to-order phase transformations in nonstoichiometric ternary uranium oxides(American Chemical Society, 2019-04-09) Murphy, GL; Wang, CH; Zhang, Z; Kowalski, PM; Beridze, G; Avdeev, M; Muránsky, O; Brand, HEA; Gu, QF; Kennedy, BJIn situ synchrotron powder X-ray diffraction measurements have demonstrated that the isostructural AUO4–x (A = alkaline earth metal cation) oxides CaUO4–x and α-Sr0.4Ca0.6UO4–x undergo a reversible phase transformation under reducing conditions at high temperatures associated with the ordering of in-plane oxygen vacancies resulting in the lowering of symmetry. When rhombohedral (space group R3̅m) CaUO4–x and α-Sr0.4Ca0.6UO4–x are heated to 450 and 400 °C, respectively, in a hydrogen atmosphere, they undergo a first-order phase transformation to a single phase structure which can be refined against a triclinic model in space group P1̅, δ-CaUO4–x and δ-Sr0.4Ca0.6UO4–x, where the oxygen vacancies are disordered initially. Continued heating results in the appearance of superlattice reflections, indicating the ordering of in-plane oxygen vacancies. Cooling ordered δ-CaUO4–x and δ-Sr0.4Ca0.6UO4–x to near room temperature results in the reformation of the disordered rhombohedral phases. Essential to the transformation is the generation of a critical amount of oxygen vacancies. Once these are formed, the transformation can be accessed continuously through thermal cycling, showing that the transformations are purely thermodynamic in origin. Stoichiometric structures of both oxides can be recovered by heating oxygen deficient CaUO4–x and α-Sr0.4Ca0.6UO4–x under pure oxygen to high temperatures. When heated in air, the amount of oxygen vacancy defects that form in CaUO4–x and α-Sr0.4Ca0.6UO4–x are found to correlate with the A site composition. The inclusion of the larger Sr2+ cation on the A site reduces defect–defect interactions, which increases the amount of defects that can form and lowers their formation temperature. The relative difference in the amount of defects that form can be understood on the basis of oxygen vacancy and U5+ disordering as shown by both ab initio calculations and estimated oxygen vacancy formation energies based on thermodynamic considerations. This difference in defect–defect interactions consequently introduces variations in the long-range ordered anionic lattice of the δ phases despite the isostructural relationship of the α structures of CaUO4–x and Sr0.4Ca0.6UO4–x. These results are discussed with respect to the influence the A site cation has upon anion defect formation and ordering and are also compared to δ-SrUO4–x, the only other material known to be able to undergo a reversible symmetry lowering and disorder-to-order transformation with increasing temperature. © 2019 American Chemical Society
- ItemCrystal chemistry and formation mechanism of non-stoichiometric monoclinic K-jarosites(Mineralogical Society, 2013-04-01) Grey, IE; Scarlett, NVY; Brand, HEASyntheses in acidified hydrothermal (HT) solutions (1 N H2SO4 or stronger) produce monoclinic non-stoichiometric K-jarosites which contain Fe-site vacancies with long-range order. Syntheses in non-acidified HT solutions produce rhombohedral K-jarosites which contain relatively large numbers of Fe-site vacancies with no long-range order. Increasing the [Fe]/[K] ratio, reaction temperature and reaction time in non-acidified solutions promotes the formation of monoclinic jarosites which contain Fe-site vacancies with short-range order. A structural model including details of the ordering of the Fe-site vacancies was obtained by refinement of single-crystal synchrotron data from one of the HT synthesis products; this model was used to refine synchrotron powder X-ray diffraction data from products synthesized at different reaction times, temperatures and [Fe]/[K] ratios. Thermal and chemical analyses are consistent with a model for non-stoichiometry in which domains of stoichiometric jarosite are intergrown with butlerite-like iron-deficient domains with a composition [Fe-2(SO4)(2)(OH)(2)(H2O)(4)]. It was found that heterogeneous nucleation of monoclinic jarosite on Si disks is preceded by the formation of an oriented film of Maus's Salt, K5Fe3O(SO4)(6)center dot 10H(2)O, as a precursor phase, and that this transforms topotactically into oriented jarosite, which contains butlerite-like layers parallel to the disk surface. Structural models for the transformation of Maus's Salt into jarosite are proposed.© 2013, Mineralogical Society.
- ItemCrystal structure and magnetic modulation in β−Ce2O2FeSe2(American Physical Society, 2017-08-11) Wang, CH; Ainsworth, CM; Champion, SD; Stewart, GA; Worsdale, MC; Lancaster, T; Blundell, SJ; Brand, HEA; Evans, JSOWe report a combination of x-ray and neutron diffraction studies, Mössbauer spectroscopy, and muon spin relaxation (μ+SR) measurements to probe the structure and magnetic properties of the semiconducting β-Ce2O2FeSe2 oxychalcogenide. We report a structural description in space group Pna21 which is consistent with diffraction data and second harmonic generation measurements and reveal an order-disorder transition on one Fe site at TOD≈330K. Susceptibility measurements, Mössbauer, and μ+SR reveal antiferromagnetic ordering below TN=86K and more complex short range order above this temperature. 12 K neutron diffraction data reveal a modulated magnetic structure with q=0.444bN∗. © 2017 American Physical Society.
- ItemCrystal structure of propionitrile (CH3CH2CN) determined using synchrotron powder X-ray diffraction(International Union of Crystallography, 2020-01) Brand, HEA; Gu, QF; Kimpton, JA; Auchettl, R; Ennis, CThe structure and thermal expansion of the astronomical molecule propionitrile have been determined from 100 to 150 K using synchrotron powder X-ray diffraction. This temperature range correlates with the conditions of Titan's lower stratosphere, and near surface, where propionitrile is thought to accumulate and condense into pure and mixed-nitrile phases. Propionitrile was determined to crystallize in space group, Pnma (No. 62), with unit cell a = 7.56183 (16) Å, b = 6.59134 (14) Å, c = 7.23629 (14), volume = 360.675 (13) Å3 at 100 K. The thermal expansion was found to be highly anisotropic with an eightfold increase in expansion between the c and b axes. These data will prove crucial in the computational modelling of propionitrile–ice systems in outer Solar System environments, allowing us to simulate and assign vibrational peaks in the infrared spectra for future use in planetary astronomy. © 2020 International Union of Crystallography