Browsing by Author "Brück, E"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemDriving magnetostructural transitions in layered intermetallic compounds(American Physical Society, 2013-05-23) Wang, JL; Caron, L; Campbell, SJ; Kennedy, SJ; Hofmann, M; Cheng, ZX; Din, MFM; Studer, AJ; Brück, E; Dou, SXWe report the dramatic effect of applied pressure and magnetic field on the layered intermetallic compound Pr0.5Y0.5Mn2Ge2. In the absence of pressure or magnetic field this compound displays interplanar ferromagnetism at room temperature and undergoes an isostructural first order magnetic transition (FOMT) to an antiferromagnetic state below 158 K, followed by another FOMT at 50 K due to the reemergence of ferromagnetism as praseodymium orders (T-C(Pr)). The application of a magnetic field drives these two transitions towards each other, whereas the application of pressure drives them apart. Pressure also produces a giant magnetocaloric effect such that a threefold increase of the entropy change associated with the lower FOMT (at T-C(Pr)) is seen under a pressure of 7.5 kbar. First principles calculations, using density functional theory, show that this remarkable magnetic behavior derives from the strong magnetoelastic coupling of the manganese layers in this compound. © 2013, American Physical Society.
- ItemHigh/low-moment phase transition in hexagonal Mn-Fe-P-Si compounds(American Physical Society, 2012-07-30) Dung, NH; Zhang, L; Ou, ZQ; Zhao, L; van Eijck, L; Mulders, AM; Avdeev, M; Suard, E; van Dijk, NH; Brück, EUsing high-resolution neutron diffraction measurements for Mn-rich hexagonal Mn-Fe-P-Si compounds, we show that the substitution of Mn for Fe on the 3f sites results in a linear decrease of the Fe/Mn(3f) magnetic moments, while the Mn(3g) magnetic moments remain constant. With increasing temperature, the Mn(3g) magnetic moments show almost no change, while the Fe/Mn(3f) moments decrease quickly when the transition temperature is approached. The reduction of the magnetic moments at the transition temperature and in the high-temperature range is discussed based on changes in interatomic distances and lattice parameters and high-temperature magnetic-susceptibility measurement. © 2012, American Physical Society.
- ItemNeutron diffraction study on the magnetic structure of Fe2P-based Mn0.66Fe1.29P1-xSix melt-spun ribbons(Elsevier Science BV., 2013-08-01) Ou, ZQ; Zhang, L; Dung, NH; van Eijck, L; Mulders, AM; Avdeev, M; van Dijk, NH; Brück, EWe report on the magnetic and structural properties of Mn0.66Fe1.29P1−xSix melt-spun ribbons with 0.34≤x≤0.42 that are promising candidates for high-temperature magnetocaloric applications. A magnetic moment of up to 4.57 μB/f.u. for x=0.34 indicates high magnetic density in the system, which is certainly advantageous for the magnetocaloric effects. Introducing site disorder at the 3g site by replacing 1/3 of Fe with Mn appears to enhance the magnetic interaction, while the strong magnetoelastic coupling is maintained. This site disorder also shows a stabilizing effect on the hexagonal crystal structure, which is maintained to a high Si content. The moment alignment within the crystallographic unit cell is also affected when the Si content is increased from x=0.34 to 0.42 in the Mn0.66Fe1.29P1−xSix compounds as the canting angle with respect to the c-direction increases. © 2013, Elsevier Ltd.