Browsing by Author "Bouazza, A"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemHydrohalite formation in frozen clay brines(Australian Institute of Nuclear Science and Engineering (AINSE), 2020-11-11) Gates, W; Bordallo, HN; Ferhervari, A; Klapproth, A; Acikel, A; Bouazza, A; Aldridge, LP; Iles, GN; Mole, RAHydrated forms of cryosalts in frozen brines play important roles in the polar landscape and troposphere of Earth [1], and their melting [2] is implicated in recurring slope lineae (RSL) in Antarctica’s McMurdo Dry Valley [3] and equator-facing, mid-latitude (42ºN-52ºS) slopes of Mars [4]. Observation of the widespread occurrence of clay minerals and salts on the Martian surface [5] indicates that saline groundwater [6] may still be present on Mars. The surface of Mars ranges in temperature from 293 K on the equator at noon to 120 K at the poles and mobility of sub-surface water ice will depend on the local temperature and the mobility of confined water in the crustal clays. We applied quasielastic neutron scattering using the backscattering spectrometer EMU (Australian Nuclear Science and Technology Organisation) at 1 μeE resolution, to the system: sodium montmorillonite – 5M NaCl (Na-Mt-NaCl and calcium montmorillonite – 5M CaCl2 (Ca-Mt-CaCl2); to establish boundary conditions influencing the dynamics of confined water. Results from elastic fixed window (EFW) data indicate a substantial increase in the mean square displacement of hydrogen (H) in the brine conditions at all temperatures above 100K, indicating enhanced mobility of water in the presence of brines. A phase transition was observed in Na-Mt-NaCl at 255K (on heating) indicating the presence of the cryosalt hydrohalite (NaCl·2H2O), but no phase transition was observed in Ca-Mt-CaCl2. In addition, quasielastic neutron scattering (QENS) spectra highlighted that water in the Ca-Mt-CaCl2 system was strongly confined at room temperature. Recently [6] hydrohalite was observed to form in frozen gels of Na-Mt brines, but not in Ca-Mt brines. They considered that textural differences in the two forms allowed the gel pores of the Na-Mt to retain liquid saline pore water to well below the freezing point of pure water. Based on our analysis, water is restricted to rotational mobility in the Na-Mt-NaCl below 255K, but presents more translational mobility above 255K. These findings largely support those of Yesilbas [7] in the importance of pore structure in controlling cryosalt formation, and further implicate their role in associated phenomena such as RSL.
- ItemNeutron scattering quantification of unfrozen pore water in frozen mud(Elsevier, 2021-09) Gates, WP; Bordallo, HN; Bouazza, A; Carnero-Guzman, GG; Aldridge, LP; Klapproth, A; Iles, GN; Booth, N; Mole, RA; Seydel, T; Yu, DH; de Souza, NRThe Earth's polar regions are experiencing a greater frequency of freeze-thaw events throughout the polar summer, contributing to atmospheric methane and destabilising clay-rich sediments. Clays in soils tightly bind pore water and thus substantially modify freeze-thaw events. While temperatures of phase transitions for confined pore water may be precisely assessed using calorimetric or thermal analyses to −30 or −40 °C, neutron scattering directly probes how pores in clay minerals control ice formation and melting to lower temperatures. We apply elastic neutron scattering to accurately quantify the unfrozen water content of clay gels and unambiguously identify different pore-water environments by their freezing temperatures. Using this approach, we conclude that cryosuction controls water mobility in frozen soils in the absence of soluble salts to much lower temperatures than observed by other techniques. Dyanmics determined from neutron scattering indicates that water in clay gel pores thaws at much lower temperatures than currently considered, and thus pose potential risks for contaminant migration at sub freezing temperatures. The general poor strength of wet clays can significantly impact infrastructure in cold regions undergoing an increased frequency of freeze-thaw events. © 2021 Elsevier Inc.