Browsing by Author "Bolst, D"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Item3D sensitive volume microdosimeter with improved tissue equivalency: charge collection study and its application in 12C ion therapy(IOP Publishing, 2018-02-06) James, B; Tran, LT; Bolst, D; Prokopovich, DA; Reinhard, MI; Lerch, MLF; Petasecca, M; Guatelli, S; Povoli, M; Kok, A; Matsufuji, N; Jackson, M; Rosenfeld, ABThis research focuses on the characterisation of a new 3D sensitive volume (SV) microdosimeter covered with polyimide – a material which closely mimics human tissue. The electrical and charge collection properties of the device were investigated and its application in 12C ion therapy were studied. Charge collection studies revealed uniform charge collection and no cross talk between adjacent SVs. To study the microdosimetric response in 12C ion therapy, the new polyimide mushroom microdosimeter were placed at various positions along the central axis of a 290 MeV/u 12C ion spread out Bragg peak (SOBP) at the Heavy Ion Medical Accelerator in Chiba (HIMAC), Japan. From these microdosimetric spectra, dose mean lineal energy $(\overline{{y}_{D})}$ and RBE10 results were obtained, with RBE10 increasing from 1.3 at the entrance to 2.7 at the end of the SOBP. The results obtained in this work show that the new generation of mushroom microdosimeters, covered with tissue equivalent polyimide material, are a useful tool for quality assurance in heavy ion therapy applications. © Open Access - CC BY - IOP Publishing Ltd.
- ItemApplication of an SOI microdosimeter for monitoring of neutrons in various mixed radiation field environments(Institute of Electrical and Electronics Engineers (IEEE), 2022-03-01) Pan, VA; Vohradsky, J; James, B; Pagani, F; Chartier, L; Debrot, E; Pastuovic, Z; Cutajar, D; Poder, J; Nancarrow, M; Pereloma, E; Bolst, D; Lee, SH; Inaniwa, T; Safavi-Naeini, M; Prokopovich, DA; Guatelli, S; Petasecca, M; Lerch, MLF; Povoli, M; Kok, A; Tran, LT; Rosenfeld, ABRadiation monitoring in space radiation is complex due to galactic cosmic rays (GCRs), solar particle events (SPEs), and albedo particles. Thermal neutrons are an important component in the Moon radiation albedo field which can cause single event upset (SEU) in electronics when they interact with the 10 B present in electronic components. In this work, we studied an application of silicon on insulator (SOI) microdosimeters for neutron monitoring in various mixed radiation field environments. A 10- μm SOI microdosimeter was utilized in conjunction with a 10 B 4 C thin-film converter to successfully measure the thermal neutron contribution out of field of a therapeutic proton beam as well as an 18-MV X-ray linear accelerator (LINAC). The microdosimeter was placed downstream of the Bragg peak (BP) as well as laterally out of field of the proton beam and at two positions along the treatment couch of the 18-MV LINAC. It was demonstrated that the 10- μm SOI microdosimeter with 10 B 4 C converter is suitable for detection of thermal neutrons with excellent discrimination of gamma, fast and thermal neutron components in the presence of a gamma-neutron pulsed field of an 18-MV LINAC. To reduce the gamma contribution and further improve detection of neutrons in mixed radiation fields, a new 2 μm Mushroom-planar microdosimeter was fabricated and characterized in detail using an ion beam induced charge collection (IBIC) technique with 1.78 MeV He2+ ions. It was demonstrated that this 2 μm SOI microdosimeter can be operated in a passive mode. The SOI microdosimeter with the 10 B 4 C converter can be recommended for the detection of thermal neutrons for SEU prediction in the mixed gamma-neutron fields during space missions, especially for the Moon mission.© Copyright 2025 IEEE
- ItemCharacterization of prompt gamma rays for in-vivo range verification in hadron therapy: a geant4 simulation study(Institute of Physics Publishing, 2018-02-06) Zarifi, M; Guatelli, S; Qi, Y; Bolst, D; Prokopovich, DA; Rosenfeld, ABPrompt gamma (PG) rays have been proposed for in-vivo beam range verification during treatment delivery. As a secondary by-product emitted almost instantaneously upon ion-nuclear interaction, PG rays offer real-time tracking of the Bragg peak (BP). However their detection is challenging since they have a broad energy spectrum with interference from neutrons and stray gamma rays. Numerous approaches have been proposed to utilise PG for in-vivo beam range verification. In this work, Geant4 Monte Carlo (MC) simulations have been used to study the spectral, spatial, temporal and angular distribution characteristics of PG emission and detection from hadron radiation fields of varying energy. Proton, 12C and 4He beams irradiated homogeneous water phantoms. These studies will provide valuable information for the development of clinically suitable and reliable PG detector systems. © The Authors. Open Access.
- ItemComparative study of alternative Geant4 hadronic ion inelastic physics models for prediction of positron-emitting radionuclide production in carbon and oxygen ion therapy(IOP Publishing, 2019-08-01) Chacon, A; Guatelli, S; Rutherford, H; Bolst, D; Mohammadi, A; Ahmed, A; Nitta, M; Nishikido, F; Iwao, Y; Tashima, H; Yoshida, E; Akamatsu, G; Takyu, S; Kitagawa, A; Hofmann, T; Pinto, M; Franklin, DR; Parodi, K; Yamaya, T; Rosenfeld, AB; Safavi-Naeini, MThe distribution of fragmentation products predicted by Monte Carlo simulations of heavy ion therapy depend on the hadronic physics model chosen in the simulation. This work aims to evaluate three alternative hadronic inelastic fragmentation physics options available in the Geant4 Monte Carlo radiation physics simulation framework to determine which model most accurately predicts the production of positron-emitting fragmentation products observable using in-beam PET imaging. Fragment distributions obtained with the BIC, QMD, and INCL + + physics models in Geant4 version 10.2.p03 are compared to experimental data obtained at the HIMAC heavy-ion treatment facility at NIRS in Chiba, Japan. For both simulations and experiments, monoenergetic beams are applied to three different block phantoms composed of gelatin, poly(methyl methacrylate) and polyethylene. The yields of the positron-emitting nuclei 11C, 10C and 15O obtained from simulations conducted with each model are compared to the experimental yields estimated by fitting a multi-exponential radioactive decay model to dynamic PET images using the normalised mean square error metric in the entrance, build up/Bragg peak and tail regions. Significant differences in positron-emitting fragment yield are observed among the three physics models with the best overall fit to experimental 12C and 16O beam measurements obtained with the BIC physics model. © 2019 Commonwealth of Australia, Australian Nuclear Science and Technology Organisation, ANSTO.