Browsing by Author "Blamey, FPC"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemHydrolysis and dpeciation of Al bound to pectin and plant cell wall material and its reaction with the dye chrome Azurol S(American Chemical Society, 2010-05-12) Wehr, JB; Blamey, FPC; Hanna, JV; Kopittke, PM; Kerven, GL; Menzies, NWHydrolysis of aluminum (Al) in solution increases at pH ≥ 4 and with an Al concentration. Pectin, an important anionic polysaccharide of plant cell walls, adsorbs Al, but this phenomenon is poorly understood. This study showed that Al3+ hydrolysis results in binding of Al to pectin in excess of the stoichiometric equivalent, leading to oversaturation of the pectin with Al. However, the degree of pectin methyl-esterification did not affect the extent of Al hydrolysis. Binding of Al to purified cell wall material also resulted in Al hydrolysis in a pH- and soluble Al concentration-dependent manner, but the source of cell wall material had no effect at fixed pH. Staining of Al-treated pectin and cell wall material from wheat (Triticum aestivum L.) and sunflower (Helianthus annuus L.) with the Al-specific dye, chrome azurol S (CAS), resulted in the formation of a purple color, with the intensity related to the extent of Al hydrolysis. © 2010, American Chemical Society
- ItemTranslocation of foliar absorbed Zn in sunflower (Helianthus annuus) leaves(Frontiers, 2022-03-02) Li, C; Wang, LL; Wu, J; Blamey, FPC; Wang, N; Chen, YL; Ye, Y; Wang, L; Paterson, DJ; Read, TL; Wang, P; Lombi, E; Wang, YH; Kopittke, PMFoliar zinc (Zn) fertilization is an important approach for overcoming crop Zn deficiency, yet little is known regarding the subsequent translocation of this foliar-applied Zn. Using synchrotron-based X-ray fluorescence microscopy (XFM) and transcriptome analysis, the present study examined the translocation of foliar absorbed Zn in sunflower (Helianthus annuus) leaves. Although bulk analyses showed that there had been minimal translocation of the absorbed Zn out of the leaf within 7 days, in situ analyses showed that the distribution of Zn in the leaf had changed with time. Specifically, when Zn was applied to the leaf for 0.5 h and then removed, Zn primarily accumulated within the upper and lower epidermal layers (when examined after 3 h), but when examined after 24 h, the Zn had moved to the vascular tissues. Transcriptome analyses identified a range of genes involved in stress response, cell wall reinforcement, and binding that were initially upregulated following foliar Zn application, whereas they were downregulated after 24 h. These observations suggest that foliar Zn application caused rapid stress to the leaf, with the initial Zn accumulation in the epidermis as a detoxification strategy, but once this stress decreased, Zn was then moved to the vascular tissues. Overall, this study has shown that despite foliar Zn application causing rapid stress to the leaf and that most of the Zn stayed within the leaf over 7 days, the distribution of Zn in the leaf had changed, with Zn mostly located in the vascular tissues 24 h after the Zn had been applied. Not only do the data presented herein provide new insight for improving the efficiency of foliar Zn fertilizers, but our approach of combining XFM with a transcriptome methodological system provides a novel approach for the study of element translocation in plants. © 2022 Li, Wang, Wu, Blamey, Wang, Chen, Ye, Wang, Paterson, Read, Wang, Lombi, Wang and Kopittke. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.