Browsing by Author "Bhowmik, RN"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemModification of magnetic ground state in Tb2Ni0. 90Si2. 94 by thermal annealing(Elsevier, 2020-09-01) Pakhira, S; Bhowmik, RN; Avdeev, M; Ranganathan, R; Mazumdar, CIn this work, we have investigated the thermal annealing effect on the physical properties of an AlB-type ternary intermetallic compound, TbNi0.90Si2.94, that undergoes spin freezing behaviour coexisting with spatially limited antiferromagnetic phase below 9.9 K in as-cast form. Thermal annealing effect is found to result in considerable changes in the magnetic ground state properties of the system. Though only one magnetic transition around 9.9 K is observed for as-cast compound, the annealed sample exhibits two distinct magnetic transitions; one around 13.5 K and another around 4 K. The magnetization measurements and zero field neutron diffraction study reveal that the high temperature transition is antiferromagnetic type, though of limited correlation length, while the low temperature transition corresponds to spin freezing behaviour. The ac susceptibility and heat capacity studies also confirm the existence of frustrated cluster glass state at lower temperature than the antiferromagnetic ordering temperature. Additionally, ac susceptibility data exhibits signature of an additional peak in the even lower temperature region (at 2.2 K for zero frequency) that tends to shift in opposite direction with frequency in contrast to that observed for conventional glassy transitions. The change in intrinsic local structural disorder of Ni and Si ions associated with annealing has been argued to be responsible for the different magnetic behaviour in as-cast and annealed samples. Published by Elsevier Ltd.
- ItemSpatially limited antiferromagnetic order in a cluster glass compound Tb2Ni0.90Si2.94(Elsevier, 2019-05-15) Pakhira, S; Mazumdar, C; Avdeev, M; Bhowmik, RN; Ranganathan, RIn the present study, the synthesis of a new ternary intermetallic compound Tb2Ni0.90Si2.94 has been reported. The detailed studies on structure, static and dynamical magnetic properties of the compound have been investigated by means of powder x-ray diffraction, compositional analysis, dc & ac magnetization, non-equilibrium dynamics, heat capacity and neutron diffraction measurements. The dc & ac magnetic susceptibility reveal that the compound undergoes spin cluster-glass behaviour below 9.9 K. The frequency dependence of the freezing temperature have been analysed on the basis of dynamic scaling laws such as power-law divergence and Vogel-Fulcher law, which further confirm the cluster-glass state formation for the compound. A detailed study on non-equilibrium dynamical behaviour associated with cluster-glass state has been carried out through magnetic relaxation behaviour along with magnetic memory effect in zero-field-cooled (ZFC) as well as field-cooled (FC) conditions and associated aging effect. The zero-field neutron diffraction study reveals the presence of a spatially limited antiferromagnetic phase in addition to the magnetically frustrated cluster-glass state. This result has also been supported through zero-field heat capacity studies. The variation in local electronic environment among the magnetic rare-earth ions caused by the structural disorder associated with Ni/Si ions have been argued to be responsible for the coexistence of different magnetic phases. © 2019 Elsevier B.V.