Browsing by Author "Berthelin, R"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemClimatic, hydrological and karst geological controls on groundwater recharge: the view from an Australian vadose zone cave observatory(American Geophysical Union (AGU), 2021-12-18) Baker, AA; Berthelin, R; Hartmann, AJ; Treble, PCIn water-limited environments, quantifying the timing and frequency of erratic rainfall recharge events and its climate forcing is of critical importance for groundwater resource management. In temperate semi-arid New South Wales, SE Australia (precipitation: 615 mm/year, pan evaporation: 1679 mm/year), since 2010 we have been using a limestone cave situated at 20 m below land surface, and just above the water table, as a vadose zone observatory of potential recharge approximated by drip rate observations. Complimented since 2018 by a soil moisture probe network and using the VarKarst karst-specialized recharge model, we investigate the climatic, hydrological and karst geological controls on recharge dynamics. We observe nineteen recharge events (07.2010 to 01.2021). They cluster into two periods (1) seven events between 08.2010 and 12.2010 during a La Niña (enhanced spring rainfall is typical in eastern Australia) and (2) seven events between 06.2016 and 10.2016 associated with a negative Indian Ocean Dipole (which is associated with wet winters and springs in southern Australia). Comparison with antecedent rainfall indicates a minimum of 40 mm rainfall over 14-days is required for recharge in winter, and >120 mm rainfall over 14-days in summer. We will use the karst recharge model to simulate the observed recharge events and to quantify the threshold behavior of the soil and vadose zone above the cave. Two recharge events have occurred since the establishment of the soil moisture network (03.05.2020, 29.07.2020). For those, we can analyze the influence of antecedent soil storage on the initiation of recharge and use this understanding for an evaluation of the simulated internal fluxes and storages of karst recharge model. Providing realistic results of both recharge and soil moisture observations, the model can be used as tool to predict the impact of past and future climate changes on groundwater renewal. Plain-language Summary Many arid and semi-arid regions rely on groundwater for water supply. Rainfall replenishes this groundwater resource, but how do we know when this replenishment (technically called recharge) occurs? We report the results from a unique Australian observatory – a cave situated in limestone and located just above the water table in a semi-arid climate region. Water percolating into the cave has been measured for over ten years, and we observe nineteen recharge events, most of which occur in wet climate phases of the climate phenomena La Niña or the Indian Ocean Dipole. Combined with measurements of climate and soil moisture, and a computational model of recharge, we quantify fluxes and storages of the unsaturated zone above the cave to better understand which conditions favor or hinder groundwater renewal. That way, we can estimate how potential future climate changes will affect future groundwater availability.
- ItemInsights into recharge processes and speleothem proxy archives from long-term monitoring networks of cave drip water hydrology(Copernicus GmbH, 2020-05-04) Baker, AA; Treble, PC; Hartmann, A; Cuthbert, MO; Markowska, M; Berthelin, R; Tadros, CV; Leopold, M; Hankin, SISince 2010 we have established cave drip water hydrological monitoring networks in four contrasting climate zones (Mediterranean, montane, semi-arid and sub-tropical) across continental Australia. Deploying over one hundred automated drip loggers, we combine these long-term monitoring datasets with climate and water isotope data, lidar mapping, electrical resistivity imaging and karst hydrological modelling to provide insights into recharge processes and the impact of hydrological variability on speleothem proxy archives. We identify increases in drip discharge and compare the timing of those events to antecedent climate conditions (rainfall, evapotranspiration). We find rainfall recharge thresholds vary with climate. At our montane site, recharge occurs after 13 to 31 mm rainfall events, depending on antecedent conditions. At the semi-arid site, recharge occurs after 40 mm rainfall events, and at our sub-tropical sites, recharge occurs following all instances where > 93 mm / week of precipitation occurs, with lower precipitation thresholds (down to 33 mm / week) possible depending on antecedent conditions and at sites with limited vegetation cover. We use these recharge thresholds to constrain simple soil moisture balance models to better understand soil and karst storage volumes. Combined with electrical resistivity imaging, we can relate recharge to the caves to subsurface water flow paths and karst water stores. At our montane and Mediterranean climate sites, relatively consistent drip water isotopic composition confirms the presence of well-mixed water stores. This allows us to quantify the extent of speleothem oxygen isotope variability due to fractionation associated with changes in drip rate. We identify significant differences in long-term mean drip rates between different drip sites within a cave, and significant differences in event-based drip rate responses within a cave. Drip hydrological variability helps explain the within-cave variability of speleothem oxygen isotope composition observed at both sites, and helps identify the primary drip water oxygen isotope signal. At our semi-arid site, drip water isotopic composition is dominated by epikarst evaporation and our drip water monitoring demonstrates that recharge events are infrequent (~1.6 per year). Using both observational and modelling data, we quantify the relative importance of evaporative fractionation in the epikarst and fractionation during calcite precipitation. Using modern speleothem samples, we demonstrate that the oxygen isotope signal in this water limited environment reflects the balance between the oxygen isotope composition of recharge and its subsequent fractionation in the soil, epikarst and cave. © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 Licence.