Browsing by Author "Bell, D"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemA Holocene record of climate and hydrological changes from Little Llangothlin Lagoon, south eastern Australia(Sage, 2014-06-30) Woodward, C; Shulmeister, J; Bell, D; Haworth, R; Jacobsen, GE; Zawadzki, AWe present a new well dated Holocene record of environmental change from Little Llangothlin Lagoon in eastern Australia derived from aquatic plant macrofossils, macroscopic charcoal flux, and sediment stratigraphy from multiple cores. Little Llangothlin was an ephemeral freshwater wetland exhibiting frequent dry phases between 9800 and 9300 calendar years before present (cal. yr BP). There was a switch to a more positive water balance after 9300 cal. yr BP, and by 8000 cal. yr BP, there was a lake that persisted until 6100 cal. yr BP. The period between 6100 and 1000 cal. yr BP was much drier, and there is no evidence for a permanent lake during this period. The Little Llangothlin record provides evidence for a wet phase during the Early to Middle Holocene (9000–6000 cal. yr BP) from the boundary region between temperate and tropical influences in eastern Australia. We propose that generally enhanced circulation after 9000 cal. yr BP explains the pattern of increasing moisture at the site at this time. The later Holocene climate at the site is consistent with other sites in south east Australia with a switch to generally drier conditions after 6000 cal. yr BP. © 2020 by SAGE Publications
- ItemSurface exposure chronology of the Waimakariri glacial sequence in the Southern Alps of New Zealand: Implications for MIS-2 ice extent and LGM glacial mass balance(Elsevier, 2015-11-01) Rother, H; Shulmeister, J; Fink, D; Alexander, D; Bell, DDuring the late Quaternary, the Southern Alps of New Zealand experienced multiple episodes of glaciation with large piedmont glaciers reaching the coastal plains in the west and expanding into the eastern alpine forelands. Here, we present a new 10Be exposure age chronology for a moraine sequence in the Waimakariri Valley (N-Canterbury), which has long been used as a reference record for correlating glacial events across New Zealand and the wider Southern Hemisphere. Our data indicate that the Waimakariri glacier reached its maximum last glaciation extent prior to ∼26 ka well before the global last glaciation maximum (LGM). This was followed by a gradual reduction in ice volume and the abandonment of the innermost LGM moraines at about 17.5 ka. Significantly, we find that during its maximum extent, the Waimakariri glacier overflowed the Avoca Plateau, previously believed to represent a mid-Pleistocene glacial surface (i.e. MIS 8). At the same time, the glacier extended to a position downstream of the Waimakariri Gorge, some 15 km beyond the previously mapped LGM ice limit. We use a simple steady-state mass balance model to test the sensitivity of past glacial accumulation to various climatic parameters, and to evaluate possible climate scenarios capable of generating the ice volume required to reach the full local-LGM extent. Model outcomes indicate that under New Zealand's oceanic setting, a cooling of 5 °C, assuming modern precipitation levels, or a cooling of 6.5 °C, assuming a one third reduction in precipitation, would suffice to drive the Waimakariri glacier to the eastern alpine forelands (Canterbury Plains). Our findings demonstrate that the scale of LGM glaciation in the Waimakariri Valley and adjacent major catchments, both in terms of ice volume and downvalley ice extent, has been significantly underestimated. Our observation that high-lying glacial surfaces, so far believed to represent much older glacial episodes, were glaciated during the LGM, challenges the conventional geomorphic model of glaciation in New Zealand where the vertical arrangement of glacial landform-associations is used to assign successively older glaciation ages. © 2015, Elsevier B.V.