Browsing by Author "Barr, C"
Now showing 1 - 16 of 16
Results Per Page
Sort Options
- ItemThe application of pollen radiocarbon dating and bayesian age-depth modeling for developing robust geochronological frameworks of wetland archives(Cambridge University Press for the Arizona Board of Regents on behalf of the University of Arizona, 2022-04-27) Cadd, HR; Sherborne-Higgins, B; Becerra-Valdivia, L; Tibby, J; Barr, C; Forbes, MS; Cohen, TJ; Tyler, JJ; Vandergoes, MJ; Francke, A; Lewis, RJ; Jacobsen, GE; Marjo, CE; Turney, CSM; Arnold, LJWetland sediments are valuable archives of environmental change but can be challenging to date. Terrestrial macrofossils are often sparse, resulting in radiocarbon (14C) dating of less desirable organic fractions. An alternative approach for capturing changes in atmospheric 14C is the use of terrestrial microfossils. We 14C date pollen microfossils from two Australian wetland sediment sequences and compare these to ages from other sediment fractions (n = 56). For the Holocene Lake Werri Berri record, pollen 14C ages are consistent with 14C ages on bulk sediment and humic acids (n = 14), whilst Stable Polycyclic Aromatic Carbon (SPAC) 14C ages (n = 4) are significantly younger. For Welsby Lagoon, pollen concentrate 14C ages (n = 21) provide a stratigraphically coherent sequence back to 50 ka BP. 14C ages from humic acid and >100 µm fractions (n = 13) are inconsistent, and often substantially younger than pollen ages. Our comparison of Bayesian age-depth models, developed in Oxcal, Bacon and Undatable, highlight the strengths and weaknesses of the different programs for straightforward and more complex chrono-stratigraphic records. All models display broad similarities but differences in modeled age-uncertainty, particularly when age constraints are sparse. Intensive dating of wetland sequences improves the identification of outliers and generation of robust age models, regardless of program used. © The Author(s), 2022. Published by Cambridge University Press for the Arizona Board of Regents on behalf of the University of Arizona
- ItemClimate variability in south-eastern Australia over the last 1500 years inferred from the high-resolution diatom records of two crater lakes(Pergamon-Elsevier Science Ltd, 2014-07-01) Barr, C; Tibby, J; Gell, PA; Tyler, JJ; Zawadzki, AW; Jacobsen, GEClimates of the last two millennia have been the focus of numerous studies due to the availability of high-resolution palaeoclimate records and the occurrence of divergent periods of climate, commonly referred to as the 'Medieval Climatic Anomaly' and The Little Ice Age'. The majority of these studies are centred in the Northern Hemisphere and, in comparison, the Southern Hemisphere is relatively understudied. In Australia, there are few high-resolution, palaeoclimate studies spanning a millennium or more and, consequently, knowledge of long-term natural climate variability is limited for much of the continent. South-eastern Australia, which recently experienced a severe, decade-long drought, is one such region. Results are presented of investigations from two crater lakes in the south-east of mainland Australia. Fluctuations in lake-water conductivity, a proxy for effective moisture, are reconstructed at sub-decadal resolution over the past 1500 years using a statistically robust, diatom-conductivity transfer function. These data are interpreted in conjunction with diatom autecology. The records display coherent patterns of change at centennial scale, signifying that both lakes responded to regional-scale climate forcing, though the nature of that response varied between sites due to differing lake morphometry. Both sites provide evidence for a multi-decadal drought, commencing ca 650 AD, and a period of variable climate between ca 850 and 1400 AD. From ca 1400-1880 AD, coincident with the timing of the 'Little Ice Age', climates of the region are characterised by high effective moisture and a marked reduction in interdecadal variability. The records provide context for climates of the historical period and reveal the potential for more extreme droughts and more variable climate than that experienced since European settlement of the region ca 170 years ago. © 2014, Elsevier Ltd.
- ItemClimates of the last three interglacials in subtropical eastern Australia inferred from wetland sediment geochemistry(Elsevier, 2020-01-15) Kemp, CW; Tibby, J; Arnold, LJ; Barr, C; Gadd, PS; Marshall, JC; McGregor, GB; Jacobsen, GERecords of Australian climate during Marine Isotope Stages 5 and 7 (130–71 and 243–191 ka) are rare, preventing detailed assessments of long-term climate, drivers and ecological responses across the continent over glacial-interglacial timescales. This study presents a geochemistry-based palaeoclimate record from Fern Gully Lagoon on North Stradbroke Island (also known as Minjerribah) in subtropical eastern Australia, which records climates in MIS 7a–c, MIS 5 and much of the Holocene, in addition to MIS 4 (71–57 ka), and parts of MIS 6, MIS 3 and MIS 2 (191–130, 57–29 and 29–14 ka). Indicators of inorganic sedimentation from a 9.5 m sediment core – focussed on high-resolution estimates of sediment geochemistry supported by x-radiography, inorganic content and magnetic susceptibility – were combined with a chronology consisting of six radiocarbon (14C) and thirteen single-grain optically stimulated luminescence (OSL) ages. Hiatuses occurred at ~178–153 ka, ~36–21 ka and ~7–2 ka and likely result from the wetland drying. Low values of locally sourced aeolian materials indicate a wet MIS 7a–c and early MIS 6 before a relatively dry MIS 5. Inorganic flux during the Holocene was up to four times greater than during MIS 5, consistent with long-term interglacial drying observed in other regions, most notably in central Australia. This study highlights the importance of employing a combination of multiple dating approaches and calibrated geochemical proxies to derive climate reconstructions and to identify depositional complexities in organic-rich wetland records. © 2020 Elsevier B.V
- ItemA detailed study of Holocene climate variability in south-east Australia based on cellulose inferred lake water isotopes and monitoring and modelling approach at Lake Surprise, western Victoria.(Australasian Quaternary Association Inc., 2022-12-06) Dharmarathma, A; Tyler, JJ; Tibby, J; Barr, C; Cadd, HR; Ankor, MJ; Jones, MD; Tadros, CV; Hua, Q; Child, DP; Zawadzki, AW; Hotchkis, MAC; Gadd, PS; Klaeb, RM; Hall, TDuring the Holocene, southeast Australia experienced intense climate conditions including extended droughts. However, knowledge of the frequency and intensity of such episodes is restricted due to the scarcity of quantitative, high-resolution climate records from the region. Where conditions are possible, oxygen isotopes preserved in lake sediments are a useful tool for retracing the past climatic and environment. Here we present a well-dated, highly resolved Holocene record based on δ18O values of aquatic cellulose, alongside organic carbon isotopes and carbon/nitrogen ratios from sediments at Lake Surprise in western Victoria. Our interpretation of the palaeo-data is supported by both monitoring of water and sediment accumulation and lake isotope mass balance modelling to track the modern hydrology of the lake. The lake is highly groundwater dependant alongside its evaporative enrichment of major ions and stable isotopes. The cellulose record indicates a trend of gradually increasing aridity towards the present day, with notable extreme wet periods prevailing from 10900 – 10000, 7600 – 7000 and 5600 – 4500 cal yr BP. the lake represent a significant climate transition to towards aridity at 4500 cal yr BP and remained consistent over the last 4000 years, along with the driest period recorded from 2000 – 1550 cal yr BP. while our record is consistent with other studies from western Victoria, we demonstrate a strong coherence with SWW variability suggesting that the southern Ocean processes were the dominant controls of Holocene climate change at least over the study area. Further, we suggest an increasing influence of ENSO and IOD during the last two millennia. Our record also agrees with the pattern of variation in solar forcing to some extent which may symbolize a connection to proxy data and climate drivers. However, detailed analyses focused on solar activity and climate modes are required to understand teleconnections among these climate drivers and their mechanisms.
- ItemEcology and climate sensitivity of a groundwater-fed lake on subtropical North Stradbroke Island (Minjerribah), Queensland, Australia over the last 7500 years(Springer Nature, 2022-01) Maxson, C; Tibby, J; Barr, C; Tyler, JJ; Leng, MJ; Lomax, B; Marshall, J; McGregor, G; Schulz, C; Cadd, H; Jacobsen, GELake sediments are important archives of past climate variability and lake responses to climate. In order to accurately infer past climates, it is necessary to understand, and account for, the ecological processes that affect the record of indicators preserved in lake sediment. This is particularly the case with respect to the concentration of carbon and nitrogen (TOC, TN, and calculated C:N), and the stable isotope composition of organic matter preserved in lake sediments. These are common, yet ambiguous, tracers of environmental change. Ideally, palaeoenvironmental reconstructions using the concentration and isotope composition of organic matter should be grounded in a detailed understanding of the sources of the organic material. This study documents the history and evolution of Blue Lake, an environmentally and culturally important oligotrophic, groundwater window lake on North Stradbroke Island, Queensland, Australia. We utilise organic matter δ13C, TOC, TN, and C:N from a 2.4 m sediment core with a basal age of 7.5 cal kyr BP, to investigate changing organic matter sources as a measure of the climate sensitivity of Blue Lake. This interpretation is supported by data from contemporary algae, aquatic and terrestrial plants, and catchment soils. We show that lake nutrient dynamics drove an increase in algal biomass at 4.2 cal kyr BP. This change coincides with a widely documented intensification of the El Niño-Southern Oscillation, which we infer to have influenced lake nutrient concentrations by reducing groundwater throughflow. Climatic changes resulted in marked changes in lake primary productivity, despite relatively little turnover of the lake diatom flora and catchment vegetation. This suggests that south-east Queensland dune lakes are sensitive to climate changes and helps to refine past and future palaeoclimate research using sediments from these lakes. It also indicates that increased nutrient concentrations in Blue Lake may result from projected changes in 21st Century climate. © 2024 Springer Nature.
- ItemA fine-resolution reconstruction of climatic variability in southeastern Australia over the last 1500 years(18th INQUA Congress, 2011-07-21) Barr, C; Tibby, J; Gell, PA; Jacobsen, GE; Zawadzki, AWHigh-resolution palaeoclimate records extend knowledge of long- and short-term climatic variability beyond the limit of instrumental data. However, to date, no millennial-length, sub-decadal resolution climate records have been produced from mainland Australia. In part, this is due to the absence of suitable archives of proxies amenable to high-resolution analysis. Here, we present a study of two crater lakes in western Victoria, southeastern Australia. A diatom-conductivity transfer function was developed specifically for application to oligosaline and mesosaline lakes, such as the two study sites; Lake Elingamite and Lake Surprise. A sub-decadal resolution sampling regime was undertaken and results demonstrate that over the past 1500 years, both lakes responded to a common regional-scale climate signal. Reconstructed conductivity, a proxy for moisture balance, indicates distinct periods of contrasting climates. Both lakes record evidence of a severe, and prolonged, dry phase centered around AD 700, which was more extreme than any subsequent drought. Between ca. AD 900 and 1500, the climate was highly variable, with substantial fluctuations in effective moisture. Thereafter, a period of positive moisture balance is evident from ca. AD 1500-1850, with a marked reduction in the amplitude of variability. Correlations with studies from further afield suggest that ENSO, and possibly the Indian Ocean Dipole, are the key drivers of the observed shifts in moisture balance. These records constitute the first high-resolution evidence of centennial- and decadal-scale climatic variability over the last 1500 years from mainland Australia. This enables a recent major drought to be viewed in an historical context for the first time and provides insight into past climate regimes across southeastern Australia in general, and western Victoria in particular.Copyright (c) 2011 INQUA 18
- ItemHolocene climate variability in south east Australia; inferred from oxygen isotopes in sedimentary cellulose at Lake Surprise, Victoria(European General Assembly, 2022-05-23) Dharmarathna, A; Tyler, JJ; Barr, C; Tibby, J; Jones, MD; Anjor, MJ; Cadd, HR; Gadd, PS; Hua, Q; Child, DP; Zawadzki, AW; Hotchkis, MAC; Zolitschka, BSouth east Australia experienced periods of multi-year droughts particularly within the last 2 millennia. However, given the limited evidence from smaller number of sites and scarcity of quantitative, high-resolution climate records, it is largely unknown whether these droughts are a feature of climate through the Holocene and the extent to which they are experienced throughout the region. Where conditions are suitable, oxygen isotopes preserved in lake sediments are a useful tool for reconstructing past climate and environmental conditions. Here, we present preliminary results of a Holocene length record from Lake Surprise in western Victoria, from which we analysed δ18O of aquatic cellulose as a proxy for lake-water δ18O, complemented by organic carbon/nitrogen ratios, organic carbon isotopes and XRF (ITRAX) inferred elemental composition. Our interpretation of the palaeo-data is supported by ~3 monthly monitoring of water and sediment geochemistry to track the modern hydrology of the lake. Our preliminary results show a strong positive correlation between precipitation and sedimentary calcium (carbonate deposition) over the last 150 years, likely linked to changes in primary productivity. The aquatic cellulose δ18O record through Holocene is also correlated with carbonate concentration, reinforcing our interpretation of CaCO3 deposition in the lake during wet periods. The cellulose δ18O record indicates a trend of gradually increasing aridity from early to late Holocene, with a notable extremely dry phase over the last 2 ka. Comparison of the cellulose δ18O record with high-resolution Holocene climate records indicates that multiple climate drivers such as ENSO intensification and Antarctic warming are strongly linked to increasing aridity of the region. Further work will focus on both increasing the resolution of the record to better identify the frequency and duration of key events and on quantifying natural hydroclimate variability, particularly via lake hydrologic modelling to better constrain the paleoclimate record. © Author(s) 2022. Creative Commons Attribution 4.0 Licence.
- ItemHolocene climate variability in south-eastern Australia; inferred from oxygen isotopes in sedimentary cellulose at Lake Surprise, Victoria(Australasian Quaternary Association (AQUA), 2021-07-08) Dharmarathna, A; Tyler, JJ; Barr, C; Tibby, J; Jones, MD; Ankor, MJ; Gadd, PS; Hua, Q; Child, DP; Zawadzki, AW; Hotchkis, MAC; Zolitschka, B; Cadd, HRDuring the Holocene, south-eastern Australia experienced periods of multi-year drought. However, the scarcity of quantitative, high-resolution climate records from the region means understanding of the frequency and intensity of such events is limited. Where conditions are suitable, oxygen isotopes preserved in lake sediments are a useful tool for reconstructing past climate and environmental conditions. Here, we present preliminary results from a ca. 8700 ka record from Lake Surprise in western Victoria, from which we analysed δ18O of aquatic cellulose, alongside organic carbon/nitrogen ratios, organic carbon isotopes and XRF (ITRAX) inferred elemental composition. Our interpretation of the palaeo- data is supported by ~3 monthly monitoring of water and sediment geochemistry to track the modern hydrology of the lake. Our preliminary results show a strong positive correlation between meteorological precipitation data and sedimentary calcium (carbonate deposition) over the last 150 years, likely linked to changes in primary productivity. As a proxy for lake-water δ18O, the aquatic cellulose δ18O record is also correlated with carbonate concentration, reinforcing our interpretation of CaCO3 deposition in the lake during wet periods. The cellulose δ18O record indicates a trend of gradually increasing aridity over the last 8 ka, with a notable extremely wet period ca. 7.5–7 ka and a dry period ca 2–1.5 ka. Further work will focus on increasing the resolution of the data to better identify the frequency and duration of key events and quantifying natural hydroclimatic variability, alongside continued geochemical monitoring and modelling to better constrain the interpretation of the palaeoclimate record.
- ItemHolocene El Niño–Southern Oscillation variability reflected in subtropical Australian precipitation(Springer Nature, 2019-02-07) Barr, C; Tibby, J; Leng, MJ; Tyler, JJ; Henderson, ACG; Overpeck, JT; Simpson, GL; Cole, JE; Phipps, SJ; Marshall, JC; McGregor, GB; Hua, Q; McRobie, FHThe La Niña and El Niño phases of the El Niño-Southern Oscillation (ENSO) have major impacts on regional rainfall patterns around the globe, with substantial environmental, societal and economic implications. Long-term perspectives on ENSO behaviour, under changing background conditions, are essential to anticipating how ENSO phases may respond under future climate scenarios. Here, we derive a 7700-year, quantitative precipitation record using carbon isotope ratios from a single species of leaf preserved in lake sediments from subtropical eastern Australia. We find a generally wet (more La Niña-like) mid-Holocene that shifted towards drier and more variable climates after 3200 cal. yr BP, primarily driven by increasing frequency and strength of the El Niño phase. Climate model simulations implicate a progressive orbitally-driven weakening of the Pacific Walker Circulation as contributing to this change. At centennial scales, high rainfall characterised the Little Ice Age (~1450–1850 CE) in subtropical eastern Australia, contrasting with oceanic proxies that suggest El Niño-like conditions prevail during this period. Our data provide a new western Pacific perspective on Holocene ENSO variability and highlight the need to address ENSO reconstruction with a geographically diverse network of sites to characterise how both ENSO, and its impacts, vary in a changing climate. © The Author(s) 2019, corrected publication 2021
- ItemHolocene sediment records from World Heritage-listed K'gari/Fraser Island lakes (subtropical eastern Australia) highlight their sensitivity to drying(International Union for Quaternary Research (INQUA), 2019-07-30) Tibby, J; Barr, C; McInerney, F; Murphy, C; Raven, M; Leng, MJ; Tyler, JJ; Marshall, JC; McGregor, GB; Gadd, PSLakes are some of the most biodiverse, yet vulnerable, ecosystems on the planet. In Australia, the driest inhabited continent on earth, permanent lakes are relatively rare. By contrast, K'gari or Fraser Island, the largest sand island in the world, has a large number of permanent lakes and represents one of the few lake districts on the continent. The lakes of K'gari/Fraser island are remarkable because many are perched above the regional water table where an impermeable layer separates them from the sand below. They are one of the reasons why the island is listed as a UNESCO World Heritage site. Holocene sediment sequences have now been analysed from at least six lakes on K'gari/Fraser Island. It appears that there was marked aridity on the island from c. 8000 to 5000 ka BP. Some lakes dried completely at a time previously thought to be characterised by humid climates in the Australian subtropics. Interestingly, in some sequences there is little to no physical evidence of drying which is recorded as a hiatus in the accumulation of highly organic, acidic, lake sediments. The mid-Holocene dry phase recorded on K'gari/Fraser Island contrasts with evidence from North Stradbroke Island, a similar sand island which also has perched lakes, approximately 150 km to the south. As a result, there is strong potential to infer the Holocene regional climatology of the Australian subtropics at small spatial scales from these records. Lastly, our study highlights a largely unrecognised vulnerability of lakes on K’gari to drying and indicates a need to better understand their hydrology and response to projected future climate change. © The Authors.
- ItemHolocene ‘megadroughts’ in south-eastern Australia: deciphering regional patterns from lake sediment archives(European Geosciences Union (EGU), 2020-05-04) Tyler, JJ; Barr, C; Tibby, J; Dhar, A; Andrew, C; Dean, C; Gadd, PS; Zawadzki, AW; Child, DP; Jacobsen, GEDocumenting and understanding centennial scale hydroclimatic variability in Australia is significant both to global climate science and to regional efforts to predict and manage water resources. In particular, multidecadal to centennial periods of low rainfall – ‘megadroughts’ – have been observed in semi-arid climates worldwide, however they are poorly constrained in Australia. Here, we bring together multiple, sub-decadally resolved records of hydrological change inferred from lake sediments in western Victoria, Australia. Our analyses incorporate new elemental (ITRAX μXRF) and stable isotope (oxygen, carbon isotopes) geochemical data from West Basin and Lake Surprise, both augmented by high quality radiometric chronologies based on radiocarbon, 210Pb and 239/240Pu analyses. Collectively, the records document a transition towards a more arid and variable climate since the mid-late Holocene, which is comparable to reports of an intensification of the El Nino Southern Oscillation (ENSO) through this period. Furthermore, during the last 2000 years, the records exhibit marked periods of reduced effective moisture which contrast with records of Australian hydroclimate inferred from distal archives, as well those predicted by climate model hindcasts. Our analyses indicate that megadroughts are a natural phenomenon in southeastern Australia, requiring greater attention in efforts to predict and mitigate future climatic change. © Author(s) 2021 Creative Commons Attribution 4.0 License.
- ItemIndependent Bayesian age modelling in subtropical wetlands to assess the influence of global climate drivers across Australia(Australasiain Quaternary Association Inc, 2018-12-10) Lewis, RJ; Tibby, J; Arnold, LJ; Barr, C; Marshall, JC; McGregor, GB; Gadd, PSRigorously dated, continuous sedimentological records capturing multiple glacial/interglacial cycles are important for evaluating the magnitude and range of drivers influencing ecosystem change in Australia. Multi-proxy palaeoenvironmental reconstructions are commonly used to identify changes in long-term environmental conditions, particularly when exploring the climatic backdrop to Australia’s large scale faunal extinctions. However, interpretations of these records may not be straightforward as local and regional climate signals are often mixed in proxy records. In order to evaluate whether improved temporal constraint can help with differentiating such convoluted signals, thereby increasing the confidence placed in the role of teleconnections across the Southern Hemisphere, we present a comprehensively dated 12.7 m (basal age ~130 ka) wetland core consisting of 21 optically stimulated luminescence and seven radiocarbon ages from North Stradbroke Island. The amalgamation of stratigraphic information and independent age constraints within a Bayesian framework, highlights the complex depositional history of Welsby Lagoon between late MIS 5 and MIS 2. ITRAX core scanning data reveals fluctuations in elemental abundance through time, in particular the decrease in the amount of aeolian sediment following MIS 3. Variability is attributed to regional environmental regime changes controlled by global drivers, including Heinrich events, and the influence of moisture across mainland Australia. The comprehensive dating approach undertaken at Welsby Lagoon highlights the role that the terrestrial palaeoenvironmental records of North Stradbroke Island can play in assessing long-term climate drivers across continental Australia, without relying exclusively on isotopic tuning of remote (ice core or marine) records. © The Authors
- ItemInsights into subtropical Australian aridity from Welsby Lagoon, North Stradbroke Island, over the past 80,000 years(Elsevier, 2020-04-15) Lewis, RJ; Tibby, J; Arnold, LJ; Barr, C; Marshall, JC; McGregor, GB; Gadd, PS; Yokoyama, YTerrestrial sedimentary archives that record environmental responses to climate over the last glacial cycle are underrepresented in subtropical Australia. Limited spatial and temporal palaeoenvironmental record coverage across large parts of eastern Australia contribute to uncertainty regarding the relationship between long-term climate change and palaeoecological turnover; including the extinction of Australian megafauna during the late Pleistocene. This study presents a new, high-resolution, calibrated geochemical record and numerical dating framework from Welsby Lagoon, a wetland from North Stradbroke Island that records key periods of late Pleistocene environmental change. Single-grain optically stimulated luminescence and radiocarbon dating are integrated into a Bayesian age-depth model for the sedimentary sequence spanning Marine Isotope Stage (MIS) 5 to the present. Scanning micro X-ray fluorescence (XRF) and bulk sediment XRF assays are used to infer past dust dynamics, with changes in the abundance of silica and potassium interpreted as proxies for aridity across local and regional sources. Variations in dust flux were contemporaneous with hydrological change, concordant with changes in vegetation cover on the island and, relate to deflation events at major dust source regions on the Australian continent. The Welsby Lagoon record supports the notion of a variable MIS4 within which an increased dust flux (71–67 ka), may be indicative of drier climate. Additionally, the record also shows a lower dust flux through the Last Glacial Maximum (LGM) than is evident in other Australian aeolian records. However, this low LGM flux is attributed to the wetland’s evolution, rather than a reduction in total dust flux. ©2020 Elsevier Ltd
- ItemPaleoclimate studies and natural-resource management in the Murray-Darling Basin II: unravelling human impacts and climate variability(Taylor and Francis Group, 2013-08-09) Mills, K; Gell, PA; Gergis, J; Baker, PJ; Finlayson, CM; Hesse, PP; Jones, R; Kershaw, P; Pearson, S; Treble, PC; Barr, C; Brookhouse, MT; Drysdale, RN; McDonald, J; Haberle, SG; Reid, M; Thoms, M; Tibby, JThe management of the water resources of the Murray-Darling Basin (MDB) has long been contested, and the effects of the recent Millennium drought and subsequent flooding events have generated acute contests over the appropriate allocation of water supplies to agricultural, domestic and environmental uses. This water-availability crisis has driven demand for improved knowledge of climate change trends, cycles of variability, the range of historical climates experienced by natural systems and the ecological health of the system relative to a past benchmark. A considerable volume of research on the past climates of southeastern Australia has been produced over recent decades, but much of this work has focused on longer geological time-scales, and is of low temporal resolution. Less evidence has been generated of recent climate change at the level of resolution that accesses the cycles of change relevant to management. Intra-decadal and near-annual resolution (high-resolution) records do exist and provide evidence of climate change and variability, and of human impact on systems, relevant to natural-resource management. There exist now many research groups using a range of proxy indicators of climate that will rapidly escalate our knowledge of management-relevant, climate change and variability. This review assembles available climate and catchment change research within, and in the vicinity of, the MDB and portrays the research activities that are responding to the knowledge need. It also discusses how paleoclimate scientists may better integrate their pursuits into the resource-management realm to enhance the utility of the science, the effectiveness of the management measures and the outcomes for the end users. © 2020 Informa UK Limited
- ItemPatterns of aeolian deposition in subtropical Australia through the last glacial and deglacial periods(Cambridge University Press, 2021-02-08) Lewis, RJ; Tibby, J; Arnold, LJ; Gadd, PS; Jacobsen, GE; Barr, C; Negus, PM; Mariani, M; Penny, D; Chittleborough, D; Moss, EDebate about the nature of climate and the magnitude of ecological change across Australia during the last glacial maximum (LGM; 26.5–19 ka) persists despite considerable research into the late Pleistocene. This is partly due to a lack of detailed paleoenvironmental records and reliable chronological frameworks. Geochemical and geochronological analyses of a 60 ka sedimentary record from Brown Lake, subtropical Queensland, are presented and considered in the context of climate-controlled environmental change. Optically stimulated luminescence dating of dune crests adjacent to prominent wetlands across North Stradbroke Island (Minjerribah) returned a mean age of 119.9 ± 10.6 ka; indicating relative dune stability soon after formation in Marine Isotope Stage 5. Synthesis of wetland sediment geochemistry across the island was used to identify dust accumulation and applied as an aridification proxy over the last glacial-interglacial cycle. A positive trend of dust deposition from ca. 50 ka was found with highest influx occurring leading into the LGM. Complexities of comparing sedimentary records and the need for robust age models are highlighted with local variation influencing the accumulation of exogenic material. An inter-site comparison suggests enhanced moisture stress regionally during the last glaciation and throughout the LGM, returning to a more positive moisture balance ca. 8 ka. © 2021 University of Washington
- ItemReading the tea-tree leaves: Melaleuca quinquenervia leaves as a palaeoclimate proxy(International Union for Quaternary Research (INQUA), 2019-07-30) Geer, J; McInerney, F; Tibby, J; Hua, Q; Schulz, C; Barr, C; Marshall, J; McGregor, GThe analysis of organic material preserved in sedimentary records is a useful tool in reconstructing past climatic conditions. It has been suggested that the carbon isotope discrimination (Δ) calculated from the bulk leaf δ13C of the modern Melaleuca quinquenervia tree responds to local precipitation in south-east Queensland, Australia [1]. The preservation of these leaves in lake sediments on Minjerribah (North Stradbroke Island) dating to the mid-Holocene presents the opportunity to produce species-specific stable isotope-based records of precipitation. Here, we test the potential for M. quinquenervia to be used as a palaeoclimate proxy by examining the preservation of the bulk leaf δ13C over time and the relationship of Δ values to historical records of precipitation. Due to the varying rates of degradation of the different chemical constituents of plant matter, it is possible δ13C ratios to be altered by early diagenetic processes before, or during, the incorporation of leaves into the sediment. Therefore, modern studies are needed to establish what factors influence the discrimination derived precipitation record. Focusing on the M. quinquenervia growing at Swallow Lagoon on Minjerribah, we studied the changes to the bulk leaf δ13C ratios of exposed leaves over an eighteen-month field study. We then applied our findings to the measured δ13C ratios of bulk leaf material retrieved from a core taken from the lagoon. The Δ values calculated based on these measurements were then compared to instrumental rainfall data from the past century to test the established relationship with modern precipitation through time. By bisecting each leaf used in this study, we were able to compare the experimentally degraded leaves directly to their corresponding control halves. We observed that decay causes an approximate decrease of 1 ‰ in δ13C, as the leaves become more 13C depleted relative to the control leaf halves that were dried immediately. Quantifying this offset enables adjustment of values to be comparable to the calibration equation established using natural fall leaves from modern M. quinquenervia. Comparing the adjusted Δ values for lake core leaves from the last century to corresponding rainfall data the relationship to local precipitation seems to be preserved. Understanding exactly how early diagenesis changes the stable isotope composition of M. quinquenervia leaf material over time allows us to adjust for the offset between modern and sub-fossil bulk leaf δ13C and advances the potential to use this species as a reliable climate proxy in the future. © The authors.