Browsing by Author "Barnard, PJ"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemRhenium and technetium tricarbonyl complexes of N-Heterocyclic carbene ligands(American Chemical Society, 2014-10-03) Chan, CY; Pellegrini, PA; Greguric, I; Barnard, PJA strategy for the conjugation of N-heterocyclic carbene (NHC) ligands to biomolecules via amide bond formation is described. Both 1-(2-pyridyl)imidazolium or 1-(2-pyridyl)benzimidazolium salts functionalized with a pendant carboxylic acid group were prepared and coupled to glycine benzyl ester using 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide. A series of 10 rhenium(I) tricarbonyl complexes of the form [ReX(CO)3(ĈN)] (ĈN is a bidentate NHC ligand, and X is a monodentate anionic ligand: Cl–, RCO2–) were synthesized via a Ag2O transmetalation protocol from the Re(I) precursor compound Re(CO)5Cl. The synthesized azolium salts and Re(I) complexes were characterized by elemental analysis and by 1H and 13C NMR spectroscopy, and the molecular structures for one imidazolium salt and seven Re(I) complexes were determined by single-crystal X-ray diffraction. 1H NMR and mass spectrometry studies for an acetonitrile-d3 solution of [ReCl(CO)3(1-(2-pyridyl)-3-methylimidazolylidene)] show that the monodentate chloride ligand is labile and exchanges with this solvent yielding a cationic acetonitrile adduct. For the first time the labeling of an NHC ligand with technetium-99m is reported. Rapid Tc-99m labeling was achieved by heating the imidazolium salt 1-(2-pyridyl)-3-methylimidazolium iodide and Ag2O in methanol, followed by the addition of fac-[99mTc(OH2)3(CO)3]+. To confirm the structure of the 99mTc-labeled complex, the equivalent 99Tc complex was prepared, and mass spectrometric studies showed that the formed Tc complexes are of the form [99m/99Tc(CH3CN)(CO)3(1-(2-pyridyl)-3-methylimidazolylidene)]+ with an acetonitrile molecule coordinated to the metal center. © 2014 American Chemical Society
- ItemTriamidetriamine bearing macrobicyclic and macrotricyclic ligands: potential applications in the development of copper-64 radiopharmaceuticals(American Chemical Society, 2013-12-16) Tan, KV; Pellegrini, PA; Skelton, BW; Hogan, CF; Greguric, I; Barnard, PJA versatile and straightforward synthetic approach is described for the preparation of triamide bearing analogues of sarcophagine hexaazamacrobicyclic cage ligands without the need for a templating metal ion. Reaction of 1,1,1-tris(aminoethyl)ethane (tame) with 3 equiv of 2-chloroacetyl chloride, yields the tris(α-chloroamide) synthetic intermediate 6, which when treated with either 1,1,1-tris(aminoethyl)ethane or 1,4,7-triazacyclononane furnished two novel triamidetriamine cryptand ligands (7 and 8 respectively). The Co(III) and Cu(II) complexes of cryptand 7 were prepared; however, cryptand 8 could not be metalated. The cryptands and the Co(III) complex 9 have been characterized by elemental analysis, 1H and 13C NMR spectroscopy, and X-ray crystallography. These studies confirm that the Co(III) complex 9 adopts an octahedral geometry with three facial deprotonated amido-donors and three facial amine donor groups. The Cu(II) complex 10 was characterized by elemental analysis, single crystal X-ray crystallography, cyclic voltammetry, and UV–visible absorption spectroscopy. In contrast to the Co(III) complex (9), the Cu(II) center adopts a square planar coordination geometry, with two amine and two deprotonated amido donor groups. Compound 10 exhibited a quasi-reversible, one-electron oxidation, which is assigned to the Cu2+/3+ redox couple. These cryptands represent interesting ligands for radiopharmaceutical applications, and 7 has been labeled with 64Cu to give 64Cu-10. This complex showed good stability when subjected to l-cysteine challenge whereas low levels of decomplexation were evident in the presence of l-histidine. © 2013 American Chemical Society