Browsing by Author "Barbarao, R"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemLattice response of the porous coordination framework Zn(hba) to guest adsorption(Cambridge University Press, 2017-09-05) Auckett, JE; Dharma, AD; Cagnes, MP; Darwish, TA; Abrahams, BF; Barbarao, R; Hudson, TA; Robson, R; White, KF; Peterson, VKAnalysis of in situ neutron powder diffraction data collected for the porous framework material Zn(hba) during gas adsorption reveals a two-stage response of the host lattice to increasing CO2 guest concentration, suggesting progressive occupation of multiple CO2 adsorption sites with different binding strengths. The response of the lattice to moderate CH4 guest concentrations is virtually indistinguishable from the response to CO2, demonstrating that the influence of host–guest interactions on the Zn(hba) framework is defined more strongly by the concentration than by the identity of the guests. © International Centre for Diffraction Data 2017
- ItemLowering the energetic landscape for negative thermal expansion in 3D-linker metal–organic frameworks(ACS Publications, 2023-11-30) Chen, C; Maynard-Casley, HE; Duyker, SG; Barbarao, R; Kepert, CJ; Evans, JD; Macreadie, LKTuning the coefficient of thermal expansion (CTE) of functional materials is paramount for their practical implementation. The multicomponent nature of metal–organic frameworks (MOFs) offers an opportunity to finely adjust negative thermal expansion (NTE) properties by varying the metal ions and linkers used. We describe a new strategy to adjust the NTE by using organic linkers that include additional rotational degrees of freedom. Specifically, we employ cubane-1,4-dicarboxylate and bicyclo[1.1.1]pentane-1,3-dicarboxylate to form the MOFs CUB-5 and 3DL-MOF-1, respectively, where each linker has low torsional energy barriers. The core of these nonconjugated linkers is decoupled from the carboxylate functionalities, which frees the relative movement of these components. This results in enhanced NTE compared to the analogous, conjugated system; VT-PXRD results were used to calculate the CTE for 3DL-MOF-1 (αL = −13.9(2) × 10–6 K–1), and CUB-5 (αL = −14.7(3) × 10–6 K–1), which is greater than the NTE of MOF-5 (αL = −13.1(1) × 10–6 K–1). These results identify a new route to enhanced NTE behaviors in IRMOF materials influenced by low energy molecular torsion of the linker. © American Chemical Society