Browsing by Author "Ashford, ME"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemDevelopment of novel ligands for emerging radiometal isotopes(John Wiley & Sons, Inc., 2013-04-11) Ashford, ME; Burgess, L; Cheah, WC; Krause-Heuer, AM; Fraser, BH; Greguric, I; Lengkeek, NABackground: The use of radiometals (non-Tc, non-Re) in targeted diagnosis and radiotherapy of different disease states has increased significantly over the last 15 years. ANSTO LifeSciences radiometals program seeks to provide a suite of radiometal tools for use in PET imaging and therapeutic modalities to improve upon the existing technologies which are currently dominated by 99mTc. This will enable researchers and clinicians to study and diagnose diseases with a greater efficacy and efficiency. Method: Many of the ligands currently available for radiometals have numerous drawbacks , including unfavourable in vivo properties such as thermodynamic and kinetic stability and poor lipophilicity. We are developing new ligand systems to have improved radiometal specificity while including design flexibility allowing us to manipulate properties such as biodistribution patterns, excretion rates, pharmacokinetics, thermodynamics and in vivo stability. The synthesis should be straightforward and cost effective and have the potential for bioconjugation in the initial design. Complexation studies are performed in vitro to assess the ligands suitability. Results: We are developing ligand systems for 68Ga, 89Zr, 64Cu, 90Y and 177Lu. We have prepared a novel analogue of the ubiquitous ligand NOTA (Figure 1, b); our system replaces the biologically labile carboxylic acid with a corresponding, biologically inert isotere, a tetrazole. This manipulation should provide additional stability and increased complex lipophilicity. Our studies have shown that a tetrazole analogue of NOTA (Figure 1, b) forms stable cold-metal complexes with potential PET metals of interest such as Ga3+. Conclusion: ANSTO LifeSciences provides a complete synthetic ligand and metal complex program, complementing its broader Radiometals Program. The aim of which is to provide an array of clinically relevant ligands that can be used in multiple applications for specific metal radiopharmaceuticals for improved patient outcomes. © 2013 John Wiley & Sons
- ItemEvaluation of the antidepressant therapeutic potential of isocyanine and pseudoisocyanine analogues of the organic cation decynium-22(Elsevier B. V., 2017-09-08) Krause-Heuer, AM; Fraser-Spears, R; Dobrowolski, JC; Ashford, ME; Wyatt, NA; Roberts, MP; Gould, GG; Cheah, WC; Ng, CKL; Bhadbhade, MM; Zhang, B; Greguric, I; Wheate, NJ; Kumar, N; Koek, W; Callaghan, PD; Daws, LC; Fraser, BHAntidepressant-like activity Herein we describe the synthesis and evaluation of antidepressant properties of seven analogues (1–7) of the low affinity/high capacity transporter blocker decynium-22 (D-22). All analogues (1–7) were synthesized via base promoted coupling reactions between N-alkylated-2-methylquinolinium iodides or N-alkylated-4-methylquinolinium iodides and electrophilic N-alkylated-2-iodoquinolinium iodides. All final compounds were purified by re-crystallization or preparative HPLC and initial evaluation studies included; 1) screening for in vitro α1-adrenoceptor activity (a property that can lead to unwanted side-effects), 2) measuring antidepressant-like activity in a mouse tail suspension test (TST), and 3) measuring effects upon mouse locomotion. The results showed some analogues have lower affinities at α1-adrenoceptors compared to D-22 and showed antidepressant-like activity without the need for co-administration of SSRIs. Additionally, many analogues did not affect mouse locomotion to the same extent as D-22. Plans for additional evaluations of these promising analogues, including measurement of antidepressant-like activity with co-administration of selective serotonin re-uptake inhibitors (SSRIs), are outlined. © 2017 Elsevier B.V.
- ItemSynthesis and in vitro evaluation of tetrahydroisoquinolines with pendent aromatics as sigma-2 (σ2) selective ligands(The Royal Society of Chemistry, 2013-11-28) Ashford, ME; Nguyen, VH; Greguric, I; Pham, TQ; Keller, PA; Katsifis, AAbstract5-Bromo-N-[4-(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-butyl)]-2,3-dimethoxybenzamide 1 is a potent and selective σ2 receptor ligand suitable for further development. A series of new analogues, incorporating a variety of isoquinoline and carboxylic acid moieties, linked together with either a linear or cyclic amine spacer have been synthesised and assessed for their σ1/σ2 binding affinity and selectivity. Compounds with a rigid piperidine spacer gave Ki values for the σ2 receptor between 8.7–845 nM. Changing the configuration of the methoxy groups on the isoquinoline moiety resulted in molecules with σ2Ki values of 4.4–133 nM whereas varying the length and flexibility of the carbon spaces gave σ2Ki values 0.88–15.0 nM, some of the most active, selective σ2 ligands to date. Thus, the flexibility and length of the carbon linker and the carboxylic acid moiety are confirmed to be key to the exceptional binding affinity and selectivity for this active series. Additionally, the incorporation of a halogen on selected carboxylic acid moieties provided a convenient strategy for the introduction of a radiohalogen for applications in pharmacological and imaging studies. © 2014 The Royal Society of Chemistry
- ItemSynthesis and in vivo evaluation of [123I]melanin-targeted agents(American Chemical Society, 2015-08-15) Roberts, MP; Nguyen, VH; Ashford, ME; Berghofer, PJ; Wyatt, NA; Krause-Heuer, AM; Pham, TQ; Taylor, SR; Hogan, L; Jiang, CD; Fraser, BH; Lengkeek, NA; Matesic, L; Grégoire, MC; Denoyer, D; Hicks, RJ; Katsifis, A; Greguric, IThis study reports the synthesis, [123I]radiolabeling, and biological profile of a new series of iodinated compounds for potential translation to the corresponding [131I]radiolabeled compounds for radionuclide therapy of melanoma. Radiolabeling was achieved via standard electrophilic iododestannylation in 60–90% radiochemical yield. Preliminary SPECT imaging demonstrated high and distinct tumor uptake of all compounds, as well as high tumor-to-background ratios compared to the literature compound [123I]4 (ICF01012). The most favorable compounds ([123I]20, [123I]23, [123I]41, and [123I]53) were selected for further biological investigation. Biodistribution studies indicated that all four compounds bound to melanin containing tissue with low in vivo deiodination; [123I]20 and [123I]53 in particular displayed high and prolonged tumor uptake (13% ID/g at 48 h). [123I]53 had the most favorable overall profile of the cumulative uptake over time of radiosensitive organs. Metabolite analysis of the four radiotracers found [123I]41 and [123I]53 to be the most favorable, displaying high and prolonged amounts of intact tracer in melanin containing tissues, suggesting melanin specific binding. Results herein suggest that compound [123I]53 displays favorable in vivo pharmacokinetics and stability and hence is an ideal candidate to proceed with further preclinical [131I] therapeutic evaluation. ©2015, American Chemical Society