Browsing by Author "Aragao, D"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemChemical crystallography at the Australian Synchrotron MX Beamlines(SCANZ, 2017-12-03) Price, JR; Aishima, J; Aragao, D; Eriksson, D; Panjikar, S; Riboldi-Tunnicliffe, A; Williamson, R; Caradoc-Davies, TTThe macromolecular (MX) beamlines at the Australian synchrotron are mixed use between the structural biology and chemical crystallography (CX) communities. Since commissioning the high throughput MX1 bending magnet and the MX2 microfocus undulator beamlines have proven very successful for both communities. The deployment of a 16M Eiger detector (funded by Australian Structural Biology laboratories and Australian Cancer Research Foundation) has changed the ‘standard’ MX2 collection for CX from 1° oscillation in 1 second over 360°, which takes ~15 min with the beam attenuated to give a balance of resolution vs detector overloads to a new shutter less 360° oscillation yielding 3600 frames in 36 sec. This increase in data volume and experiment turnaround time has led to a number of challenges for the workflow for the users and highlighted the biggest dead time for beam is now: search and secure for hand mounting, and robot sample change time for automated sample handling including remote use. Indicative use of MX2 from completed search and secure in a 24-hour experiment with hand mounting (preferred by CX) was 188 completed searches. Maximum robot-mounted samples over the same duration is 288. There is a robot upgrade under development to take sample change times from ~4 min to ~30 sec, and it is anticipated that MX1 will also receive a detector upgrade. This increase in throughput is having a significant impact on our ability to return analysis on the experiment in real time, as well as deliver auto-processed data in a timely fashion (new computational hardware is on its way). Given these dramatic increases in experimental throughput, what are the addition opportunities that may be embraced by the crystallographic community in Australia? What is the future for chemical crystallography at the MX beamlines? A review of the current developments that are underway and some discussion of what may lie in the future will be presented.
- ItemCrystal structure of posnjakite formed in the first crystal water-cooling line of the ANSTO Melbourne Australian Synchrotron MX1 Double Crystal Monochromator(International Union of Crystallography (IUCr), 2020-06-30T14:00:00Z) Mills, SJ; Aishima, J; Aragao, D; Caradoc-Davies, TT; Cowieson, NP; Gee, CL; Ericsson, D; Harrop, SJ; Panjikar, S; Smith, KML; Riboldi-Tunnicliffe, A; Williamson, R; Price, JRExceptionally large crystals of posnjakite, CuSO(OH)(HO), formed during corrosion of a Swagelock(tm) Snubber copper gasket within the MX1 beamline at the ANSTO-Melbourne, Australian Synchrotron. The crystal structure was solved using synchrotron radiation to = 0.029 and revealed a structure based upon [Cu(OH)(HO)O] sheets, which contain Jahn-Teller-distorted Cu octa-hedra. The sulfate tetra-hedra are bonded to one side of the sheet corner sharing and linked to successive sheets extensive hydrogen bonds. The sulfate tetra-hedra are split and rotated, which enables additional hydrogen bonds. © Mills et al. 2020.
- ItemRecent and future developments on the Australian Synchrotron MX2 beamline driven by the Eiger 16M detector deployment(Society of Crystallographers in Australia and New Zealand, 2017-12-03) Aragao, D; Aishima, J; Clarken, R; Eriksson, D; Macedo, S; Moll, A; Mudie, N; Panjikar, S; Price, JR; Riboldi-Tunnicliffe, A; Williamson, R; Caradoc-Davies, TTThe new pixel array detector — Eiger 16M — deployed on MX2 in February 2017 has now generated more than 152 Tb of data compared with 18 Tb in the same period last year using a CCD based detector. This has not only revolutionised the speed that datasets are collected but also put challenges in the way we collect, take notes, process and store data. Here we will present how some of these challenges have been tackled and what are the future developments already being worked on for deployment in the next 12 months. We will also briefly describe one of the most common traps on collecting data on the Eiger 16M.