Browsing by Author "Akita, K"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemHydrostatic compression behavior and high-pressure stabilized β-phase in γ-based titanium aluminide intermetallics(Multidisciplinary Digital Publishing Institute, 2016-07-15) Liss, KD; Funakoshi, K; Dippenaar, RJ; Higo, Y; Shiro, A; Reid, M; Suzuki, H; Shobu, T; Akita, KTitanium aluminides find application in modern light-weight, high-temperature turbines, such as aircraft engines, but suffer from poor plasticity during manufacturing and processing. Huge forging presses enable materials processing in the 10-GPa range, and hence, it is necessary to investigate the phase diagrams of candidate materials under these extreme conditions. Here, we report on an in situ synchrotron X-ray diffraction study in a large-volume press of a modern (α2 + γ) two-phase material, Ti-45Al-7.5Nb-0.25C, under pressures up to 9.6 GPa and temperatures up to 1686 K. At room temperature, the volume response to pressure is accommodated by the transformation γ → α2, rather than volumetric strain, expressed by the apparently high bulk moduli of both constituent phases. Crystallographic aspects, specifically lattice strain and atomic order, are discussed in detail. It is interesting to note that this transformation takes place despite an increase in atomic volume, which is due to the high ordering energy of γ. Upon heating under high pressure, both the eutectoid and γ-solvus transition temperatures are elevated, and a third, cubic β-phase is stabilized above 1350 K. Earlier research has shown that this β-phase is very ductile during plastic deformation, essential in near-conventional forging processes. Here, we were able to identify an ideal processing window for near-conventional forging, while the presence of the detrimental β-phase is not present under operating conditions. Novel processing routes can be defined from these findings. © 2016, The Authors
- ItemSteels and intermetallics under extreme conditions(Australian Institute of Physics, 2016-02-02) Liss, KD; Dippenaar, RJ; Akita, K; Funakoshi, K; Reid, M; Suzuki, H; Shobu, T; Higo, Y; Saitoh, H; Zhang, S; Tomato, YMaterials are being designed and engineered for ever superior mechanical and operational properties, such as steels for lighter cars and energy-absorbing behaviour in an accident, and titanium aluminides for lighter airplane turbine blades. The manufacturing of such materials may involve processes at extreme conditions, under high pressure or high temperature. Examples are high-pressure torsion and near net-shape forging. Therefore, it becomes eminently important to know and understand the phase diagrams of such materials at extreme conditions. Structural changes may open processing windows, while elevated mechanical properties are conserved under less extreme conditions. Here, we present first phase diagram studies on high-manganese steels and on titanium aluminides by in-situ synchrotron X-ray diffraction in a large-volume cell.