Journal Articles
Browse
Browsing Journal Articles by Author "Abbey, B"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
- ItemApplication and validity of the Radon transform applied to axisymmetric neutron strain imaging(Elsevier B. V., 2019-12-15) Kirkwood, HJ; Wensrich, CM; Paradowska, AM; Abbey, BNext generation pulsed neutron sources and wavelength dispersive imaging detectors are creating new opportunities for strain analysis. One such technique is Bragg edge transmission analysis in which projected measurements of the crystallographic properties of bulk polycrystalline samples are recorded on a time-of-flight area detector. The ability to measure the elastic strain field poses the question of whether it is possible to reconstruct a three-dimensional map of the elastic strain tensor from a set of lower order projection data. Here we present a fundamental exploration of the validity of axisymmetric strain reconstruction algorithms available for inverting Bragg edge data. The results demonstrate that the compatibility of the elastic strain field under investigation is critical in determining which algorithm may be successfully applied. Finally, a more robust approach to Radon transform strain tomography is presented based on the condition of zero total strain. ©2019 Elsevier Ltd.
- ItemEnergy-resolved neutron imaging options at a small angle neutron scattering instrument at the Australian Center for Neutron Scattering(AIP Publishing, 2019-03-26) Tremsin, AS; Sokolova, AV; Salvemini, F; Luzin, V; Paradowska, AM; Muránsky, O; Kirkwood, HJ; Abbey, B; Wensrich, CM; Kisi, EHEnergy-resolved neutron imaging experiments conducted on the Small Angle Neutron Scattering (SANS) instrument, Bilby, demonstrate how the capabilities of this instrument can be enhanced by a relatively simple addition of a compact neutron counting detector. Together with possible SANS sample surveying and location of the region of interest, this instrument is attractive for many imaging applications. In particular, the combination of the cold spectrum of the neutron beam and its pulsed nature enables unique non-destructive studies of the internal structure for samples that are opaque to other more traditional techniques. In addition to conventional white beam neutron radiography, we conducted energy-resolved imaging experiments capable of resolving features related to microstructure in crystalline materials with a spatial resolution down to ∼0.1 mm. The optimized settings for the beamline configuration were determined for the imaging modality, where the compromise between the beam intensity and the achievable spatial resolution is of key concern. © 2020 AIP Publishing LLC
- ItemPropagation-based x-ray phase-contrast tomography of mastectomy samples using synchrotron radiation(American Association of Physicists in Medicine, 2019-10-01) Gureyev, TE; Nesterets, YI; Baran, PM; Taba, ST; Mayo, SC; Thompson, D; Arhatari, BD; Mihocic, A; Abbey, B; Lockie, D; Fox, J; Kumar, B; Prodanovic, Z; Häusermann, D; Maksimenko, A; Hall, CJ; Peele, AG; Dimmock, MR; Pavlov, KM; Cholewa, M; Lewis, SJ; Tromba, G; Quiney, HM; Brennan, PCPurpose Propagation-based phase-contrast computed tomography (PB-CT) is a method for three-dimensional x-ray imaging that utilizes refraction, as well as absorption, of x rays in the tissues to increase the signal-to-noise ratio (SNR) in the resultant images, in comparison with equivalent conventional absorption-only x-ray tomography (CT). Importantly, the higher SNR is achieved without sacrificing spatial resolution or increasing the radiation dose delivered to the imaged tissues. The present work has been carried out in the context of the current development of a breast CT imaging facility at the Australian Synchrotron. Methods Seven unfixed complete mastectomy samples with and without breast cancer lesions have been imaged using absorption-only CT and PB-CT techniques under controlled experimental conditions. The radiation doses delivered to the mastectomy samples during the scans were comparable to those approved for mammographic screening. Physical characteristics of the reconstructed images, such as spatial resolution and SNR, have been measured and compared with the results of the radiological quality assessment of the complete absorption CT and PB-CT image stacks. Results Despite the presence of some image artefacts, the PB-CT images have outperformed comparable absorption CT images collected at the same radiation dose, in terms of both the measured objective image characteristics and the radiological image scores. The outcomes of these experiments are shown to be consistent with predictions of the theory of PB-CT imaging and previous reported experimental studies of this imaging modality. Conclusions The results presented in this paper demonstrate that PB-CT holds a high potential for improving on the quality and diagnostic value of images obtained using existing medical x-ray technologies, such as mammography and digital breast tomosynthesis (DBT). If implemented at suitable synchrotron imaging facilities, PB-CT can be used to complement existing imaging modalities, leading to more accurate breast cancer diagnosis. © 2023 American Association of Physicists in Medicine
- ItemSimultaneous X-ray diffraction, crystallography and fluorescence mapping using the Maia detector(Elsevier, 2018-02-01) Kirkwood, HJ; de Jonge, MD; Muránsky, O; Hofmann, F; Howard, DL; Ryan, CG; van Riessen, GA; Rowles, MR; Paradowska, AM; Abbey, BInteractions between neighboring grains influence the macroscale behavior of polycrystalline materials, particularly their deformation behavior, damage initiation and propagation mechanisms. However, mapping all of the critical material properties normally requires that several independent measurements are performed. Here we report the first grain mapping of a polycrystalline foil using a pixelated energy-dispersive X-ray area detector, simultaneously measuring X-ray fluorescence and diffraction with the Maia detector in order to determine grain orientation and estimate lattice strain. These results demonstrate the potential of the next generation of X-ray area detectors for materials characterization. By scanning the incident X-ray energy we investigate these detectors as a complete solution for simultaneously mapping the crystallographic and chemical properties of the sample. The extension of these techniques to broadband X-ray sources is also discussed. © 2017 Acta Materialia Inc. Published by Elsevier Ltd.
- ItemTowards real-time analysis of liquid jet alignment in serial femtosecond crystallography(International Union of Crystallography, 2022-06-02) Patel, J; Round, A; Bielecki, J; Doerner, K; Kirkwood, HJ; Letrun, R; Schulz, J; Sikorski, M; Valiki, M; de Wijn, R; Peele, AG; Mancuso, AP; Abbey, BLiquid sample delivery systems are used extensively for serial femtosecond crystallography at X-ray free-electron lasers (XFELs). However, misalignment of the liquid jet and the XFEL beam leads to the X-rays either partially or completely missing the sample, resulting in sample wastage and a loss of experiment time. Implemented here is an algorithm to analyse optical images using machine vision to determine whether there is overlap of the X-ray beam and liquid jet. The long-term goal is to use the output from this algorithm to implement an automated feedback mechanism to maintain constant alignment of the X-ray beam and liquid jet. The key elements of this jet alignment algorithm are discussed and its performance is characterized by comparing the results with a manual analysis of the optical image data. The success rate of the algorithm for correctly identifying hits is quantified via a similarity metric, the Dice coefficient. In total four different nozzle designs were used in this study, yielding an overall Dice coefficient of 0.98. © 2022 The Authors, CC BY 4.0 licence
- ItemX-ray phase-contrast computed tomography for soft tissue Imaging at the Imaging and Medical Beamline (IMBL) of the Australian Synchrotron(MDPI, 2021-04-30) Arhatari, BD; Stevenson, AW; Abbey, B; Nesterets, YI; Maksimenko, A; Hall, CJ; Thompson, D; Mayo, SC; Fiala, T; Quiney, HM; Taba, ST; Lewis, SJ; Brennan, PC; Dimmock, MR; Häusermann, D; Gureyev, TEThe Imaging and Medical Beamline (IMBL) is a superconducting multipole wiggler-based beamline at the 3 GeV Australian Synchrotron operated by the Australian Nuclear Science and Technology Organisation (ANSTO). The beamline delivers hard X-rays in the 25–120 keV energy range and offers the potential for a range of biomedical X-ray applications, including radiotherapy and medical imaging experiments. One of the imaging modalities available at IMBL is propagation-based X-ray phase-contrast computed tomography (PCT). PCT produces superior results when imaging low-density materials such as soft tissue (e.g., breast mastectomies) and has the potential to be developed into a valuable medical imaging tool. We anticipate that PCT will be utilized for medical breast imaging in the near future with the advantage that it could provide better contrast than conventional X-ray absorption imaging. The unique properties of synchrotron X-ray sources such as high coherence, energy tunability, and high brightness are particularly well-suited for generating PCT data using very short exposure times on the order of less than 1 min. The coherence of synchrotron radiation allows for phase-contrast imaging with superior sensitivity to small differences in soft-tissue density. Here we also compare the results of PCT using two different detectors, as these unique source characteristics need to be complemented with a highly efficient detector. Moreover, the application of phase retrieval for PCT image reconstruction enables the use of noisier images, potentially significantly reducing the total dose received by patients during acquisition. This work is part of ongoing research into innovative tomographic methods aimed at the introduction of 3D X-ray medical imaging at the IMBL to improve the detection and diagnosis of breast cancer. Major progress in this area at the IMBL includes the characterization of a large number of mastectomy samples, both normal and cancerous, which have been scanned at clinically acceptable radiation dose levels and evaluated by expert radiologists with respect to both image quality and cancer diagnosis. © 2021 The Authors, Licensee MDPI, Basel, Switzerland. Open Access Creative Commons Attribution (CC BY).