

Australian Government

Journey from Gen III/III+ to Gen IV Reactors

Dr Adi Paterson

Australian Nuclear Science & Technology Organisation EA Nuclear Engineering Panel: 22 November, 2017

ANSTO Putting Science to Work

Argonne National Laboratory (West) Idaho, USA

EBR-1 First Nuclear Electricity - December 20 1951

GIF Timeline (Australia)

- Intention to apply in April 2007
- Application halted (change in Government) in late 2007
- Government supports bid to join the GIF in March 2015 with bipartisan support
- Petition presented to GIF Policy Group in October 2015
- GIF Policy Group Delegation visit to Australia in Feb 2016

Australia and GenIV

April 2007	Prime Minister announ intention to seek GIF > ANSTO redirecting re	ced Australia's membership search priorities
July 2007	Prime Minister announ r&d collaboration prog universities >\$12.5 M over 5 years >Includes new shared for	ced new nuclear ram to engage acilities at ANSTO
September 2	2007 Japan, Russia and USA support Australia's GI Presentation to GIF C	A agree to IF membership hair in Vienna
Australian Government		Ginsto

GIF Policy Group Delegation to Australia, 2-4 February 2016

Nuclear Energy Agency Announcement

Australia accedes to the GIF Framework Agreement

On 14 September 2017, Australia deposited its *instrument of accession* to the Generation IV International Forum (GIF) *Framework Agreement*...... Australia became the 14th member of the GIF on 22 June 2016 when it signed the GIF Charter.

Acceding to the *Framework Agreement* will allow Australia to become *actively engaged in R&D projects* related to Generation IV systems, particularly in R&D projects on advanced materials.

International Context

Instruments for Australia in Nuclear Power

- IAEA/NEA (Fission): Small Modular Reactors
- Fusion: **ITER** and **INTERNATIONAL TOKAMAK PHYSICS ACTIVITY** (ITPA)
- Generation IV International Forum
- China: SINAP partnership (renewal?)

Towards a strategic research and technology framework?

Generations of Nuclear Energy

Generation IV

Tree of Nuclear Power Reactors

From G. Cognet: The different generations of nuclear reactors From Generation-1 to Generation-4

Gen III Objectives

- ABWR 1996
- Active Safety reduced core damage frequency
- Improved Fuel Technology
- Design Life Extension 60-100 years
- Thermal efficiency
- Standardisation

Gen III+ Objectives

- VVER-1200/392M 2017
- Superior Thermal Efficiency
- Passive safety systems
 - Gravity fed cores, convective cooling and condensation
- Standardised designs "modularity"
- Accident tolerant fuel
- Operational design life 50 to 100 years

III/III+ to IV Global Nuclear Capacity

- Significant shifts since 2013
- The "models" are changing
- The countries are changing
- New insights:
 - Predictable supply chains (the Russian model)!
 - Lifecycle contracts with spent fuel return
 - SMRs spin or substance?

Reactors planned, under construction and operational

Generations of Nuclear Energy

Older Reactors (no more builds)

New Reactors

(current builds)

Generation III+

Advanced

Generation IV

Revolutionary

Designs

My view in 2013 Design maturity and regulators

e	Global integrated		United States							
D U C	nuclear industry					_	France			
erie	Mature nuclear		Sout	h Korea						ш
sdx	program				Rus	ssia				Ę_
and e	Mainstream nuclear						UK			en-
					Japa	in			0	
pacity	Transformational nuclear		China							
r ca	Small nuclear nation						Finland			
ato					Unit	ted Arab				
Jul	First concrete			United A	rabEn	nirates				
xec				Emirat	es					
-	New entrants			Turke Vietna	y, m					
'									a valenti ana	

Design improvement

Design evolution

Design revolution

2017

Aspiration: Design maturity and regulators

Design improvement

Design evolution

Design revolution

Genesis of Generation IV Concepts

- In 1999, low public and political support for nuclear energy
 - Oil and gas prices were low
- USA Proposed a bold initiative in 2000
 - The vision was to leapfrog LWR technology and collaborate with international partners to share R&D on advanced nuclear systems
 - Oil prices jumped soon thereafter
- Gen IV concept defined via technology goals and legal framework
 - Technology Roadmap released in 2002
 - 2 year study with more than 100 experts worldwide
 - Nearly 100 reactor designs evaluated and down selected to 6 most promising concepts
 - First signatures collected on Framework Agreement in 2005; first research projects defined in 2006

"This may have been the first time that the world came together to decide on a fission technology to develop together."

William Magwood IV, First Chairman of the Generation IV International Forum

Generation IV Goals

- Safety and Reliability
 - Very low likelihood and degree of core damage
 - Eliminate need for offsite emergency response
- Sustainability
 - Long term fuel supply
 - Minimise waste and long term stewardship burden
- Proliferation Resistance and Physical Protection
 - Unattractive Materials diversion pathway
 - Enhanced physical protection against terrorism
- Economics
 - Life cycle cost advantage over other energy sources
 - Financial risk comparable to other energy sources

Generation IV reactors

Sodium Fast Reactor

Gas-Cooled Fast Reactor

Lead Fast Reactor

Very High Temperature Reactor

Molten Salt Cooled Reactor

Gen-IV Market Status Developments

- Terrestrial Integral Molten Salt Reactor (Canada)
- Terra-Power (US-China)
- HTR-PM in China (VHTR)
- BN-800 (Sodium Fast Reactor) Russia-China

Gen-IV and the developmental risk space

гy	Global integrated nuclear industry	Current Nuclear Power
capaci	Mature nuclear program	 Large Slow to build
e and (Mainstream nuclear	• Expensive uptront
ructur	Transformational nuclear	
stry st	Small nuclear nation	
Inau	First concrete	
	New entrants	

Design improvement

Design evolution

Design revolution

US Clusters

Reactor Design Types

- Molten Salt Reactor
- Fluoride Salt-cooled High Temperature Reactor
- Liquid Metal-cooled Fast Reactor
- High Temperature Gas Reactor
- Pebble Bed Reactor
- Nuclear Battery Reactor
- Designs Advanced Nuclear Fuels
- Small Modular Reactor
- Fusion Reactor
- Super-Critical CO₂ Reactor
- Accelerator Driven System

2016 HTR-PM China

Source: WNA

Gen-IV Australia Ambitions

- First membership by a non-nuclear power country
- Nuclear materials focus
- Safety cases
- Economics
- more focus on Waste management

ANSTO – SINAP Collaboration

- Centre for Thorium Molten Salt Reactor (TMSR) systems
 - Initial \$400M R&D investment
 - Non-active Demonstrator
- ANSTO-SINAP Joint Research Centre
 - Materials technology for Molten Salt Reactors
 - Molten salt corrosion
 - Radiation damage
 - High temperature properties

Generation IV Structural Materials R&D

- Irradiation
 - Neutron, ion damage studies
- High temperature
 - Creep testing
 - Creep/ Fatigue Analysis
- Corrosion
 - Testing in molten salt environments
- Combined environments
 - Irradiation + corrosion (MSR)
 - Corrosion + high temperature creep
 - Irradiation under high temperature

Requirements of MSR structural materials:

- Operating Temperatures of 630-700°C
- Corrosive molten fluoride salt (FLiNaK; FLiBe)
- 200 dpa neutron radiation
- 0.6 MPa pressure
- 30+ years reactor design life

Micromechanical Tensile Testing

 Jum*
 Date :29 Jul 2014
 Mag = 1.98 KX
 Signal A = SE2

 Yum = 11:59:58
 WD = 24.4 mm
 Signal A = SE2

 WD = 24.4 mm
 Signal A = SE2
 EHT = 10.00 kV

Single crystal Ni, radiated with 6 MeV He+ to 3.8e17/cm²

From Lyndon Edwards: Introduction to ANSTO and contributions to GIF with focus on VHTR Materials VHTR SSC 11-12 Nov 2016, Las Vegas, USA

Trends in Radiation Strengthening with Dose

- Ion irradiation provides useful qualitative information
- Current research linking micro to macro properties

From Lyndon Edwards: Introduction to ANSTO and contributions to GIF with focus on VHTR Materials VHTR SSC 11-12 Nov 2016, Las Vegas, USA

Effect of Radiation on Strain Rate Response

Engineering stress-strain plot for Nickel single crystal foil

<u>Unirradiated</u>

Tested in tension along

a) <100>

b) <110>

orientations at strain rates 5 and 500 n/ps.

Engineering stress-strain plot for Nickel single crystal foil Irradiated to 10¹⁷He+/cm²

Tested in tension along

c) <100>

d) <110>

orientations at strain rates 5 and 500 n/ps.

a) b) 350 Ni_<100>_5nmps Ni_<110>_5nmps 350 325 325 Ni <100> 500nmps - Ni_<110>_500nmps 300 300 275 250 225 200 175 275 Stress (MPa) 250 225 200 175 175 Engineering Engineering 150 150 125 125 100 100 75 75 50 50 25 25 0 0 0.1 0.3 0.4 0.5 0.6 0.7 0.2 0 0.1 0.2 0.3 0.4 Engineering Strain (um/um) Engineering Strain (um/um) c) d) 1.0e17He <100> 5nmps 1.0e17He <110> 5nmps 350 350 1.0e17He <100> 500nmps 325 1.0e17He <110> 500nmps 325 300 300 Stress (MPa) 275 250 225 200 275 Stress (MPa) 250 225 200 175 Engineering 175 Engineering 150 150 125 125 100 100 75 75 50 50 25 25 0 0 0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Engineering Strain (um/um) Engineering Strain (um/um)

Gen IV Structural Materials R&D

- Irradiation
 - Neutron, ion damage studies
- High temperature
 - Creep testing
 - Creep/ Fatigue Analysis
- Corrosion
 - Testing in molten salt environments
- Combined environments
 - Irradiation + corrosion (MSR)
 - Corrosion + high temperature
 - Irradiation under high temperature

MSR - ANSTO/SINAP Creep testing GH3535

Creep resistance and material degradation of a candidate Ni-Mo-Cr corrosion resistant alloy. Shrestha et al. Materials Science and Engineering A, <u>674</u>, pp.64–75

From Lyndon Edwards: Introduction to ANSTO and contributions to GIF with focus on MSR Related Materials, MSR pSSC 23-24 January PSI, Switzerland, USA

MSR and VHTR Creep/ Fatigue Analysis

RemLife Software –

 Simulator to calculate the effects of unit cycling on the accumulation of creep and creep-fatigue damage on components and estimate the associated economical impact

Maintenance

From Lyndon Edwards: Introduction to ANSTO and contributions to GIF with focus on MSR Related Materials, MSR pSSC 23-24 January PSI, Switzerland, USA

Modelling/Predicting Creep Rupture

- FEA prediction of in-service materials performance
- User-defined material models for creep strain/damage

Prediction (via FEA) of creep rupture during an accelerated creep test in ex-service AISI 316H stainless steel using a Strain Energy Ductility Exhaustion (SEDE) creep damage model

From Lyndon Edwards: Introduction to ANSTO and contributions to GIF with focus on MSR Related Materials, MSR pSSC 23-24 January PSI, Switzerland, USA

Predicting Weld Residual Stress

- ANSTO has developed models of microstructure and stress around single- and multi-pass welded joints
- Including international round-robin programmes
 - NeT (AISI 316, Inconel 600, A508)
 - USNRC (DMW)
- Used to support plant maintenance and design decisions

Typical Weld Simulation: A 508 EB Weld

Courtesy A. Vasileiou, University of Manchester

From Lyndon Edwards: Introduction to ANSTO and contributions to GIF with focus on VHTR Materials VHTR SSC 11-12 Nov 2016, Las Vegas, USA

2020s Nuclear Value Proposition

- Baseload
- Low-carbon
- Low fuel cost
- Extended Plant Life
- Safer
- Replaces Coal
- Could replace Gas and Oil
- But.....

- Do we understand anything about the energy state of the planet?
- And electricity is only a small part of this!

Breaking the link Energy and CO₂ emissions

World Balance (2015)

Petajoules 🔻

Australia BALANCE (2015) Millions of tonnes of oil equivalent 🕶

IEA Sankey Energy Balance: Australia, 2015

Energy growth in non-OECD nations

World electricity consumption, 1990-2040

Energy Information Administration, USA.

Electricity use per capita: asymmetrical..

Source: World Bank, 2011 Graphic: Mark Ho

Australia in global perspective

 Problem: confusing electricity with energy! Solution: Clean energy consensus

 Problem: ignoring emerging economies Solution: Global perspective essential

• Problem: CO₂

Solution: Clean Fuels

Option: Nuclear

 Solution: SMR, then GEN IV

ANSTO making sense of nuclear

1.00

Thank You

Carbon Intensity Notes

- Electricitymap.org
- 21/11/17 AEDT
- From about 8:30pm
- Nuclear and Hydro lead the charge!

