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Abstract. Gaseous elemental mercury (GEM) &%dRn, a  mercury, which due to the long atmospheric residence time
radioactive gas of primarily terrestrial origin with a half-life of elemental mercury (Lindberg et al., 2007) can be dis-
of 3.8 days, have been measured simultaneously at Capeibuted all over the world. According to the current emis-
Point, South Africa, since March 2007. Between March sion inventories and models, anthropogenic emissions repre-
2007 and December 2011, altogether 191 events with higtsent the largest mercury source with 2880tlyfollowed by
222Rn concentrations were identified. GEM correlated with 2680 tyr! from the oceans and 1850 tyr from the terres-
222Rn in 94 of the events and was constant during al-trial surfaces (Mason, 2009; Pirrone et al., 2010). Whereas
most all the remaining events without significant corre- anthropogenic emissions are believed to be known with an
lation. The average GEM#2Rn flux ratio of all events uncertainty of-30 %, the uncertainties of the emissions from
including the non-significant ones was0.0001 with a  oceans and terrestrial surfaces are considered th30:%
standard error 0f:0.0030 pg mBgt. Weighted with the and more (Lin et al., 2006; Lindberg et al, 2007).

event duration, the average GERFfRn flux ratio was The uncertainties related to emissions from terrestrial sur-
—0.0048+ 0.0011 pg mBqt. With an emission rate of 1.1 faces originate mostly from the poor knowledge of the emis-
222Rnatomscm?s~! and a correction for the transport sion mechanisms, the worldwide up-scaling of a small num-
time, this flux ratio corresponds to a radon-calibrated fluxber of field measurements made in a few geographic re-
of about—0.54ng GEMm2h~1 with a standard error of gions, and the measurement challenges (Lindberg et al.,
+0.13ng GEMn2h~! (» =191). With wet deposition, 2007; Gustin etal., 2008; Mason, 2009; Smith-Downey et al.,
which is not included in this estimate, the terrestrial sur-2010). Mercury emission from terrestrial surfaces is depen-
face of southern Africa seems to be a net mercury sink ofdent on meteorological conditions, type of soil and vegeta-
about—1.55ngnT?h~1. The additional contribution of an tion, and historical atmospheric deposition (Zhang and Lind-
unknown but presumably significant deposition of reactiveberg, 1999; Gustin et al., 2000, 2008; Gustin, 2003; Song and
gaseous mercury would further increase this sink. Van Heyst, 2005; Bash, 2010; Smith-Downey et al., 2010).
The influence of these parameters has been studied in the
laboratory and in the field, but the underlying mechanisms
are still not well understood (Mason, 2009). The flux can
be bi-directional depending on the mercury concentration in
.ambient air: deposition at higher concentrations and emis-

transformation to methvl mercurv. which is a potent toxintaon at lower concentrations with a cross-over point termed
y Y P “compensation point” (e.g. Hanson et al., 1995; Lindberg et

to humans and animals (Mergler et al., 2007; Scheuhamme ) . . \
et al., 2007). Of primary concern are thus the emissions o ., 1998; Zhang et al,, 2009). An intercomparison of field

1 Introduction
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flux measurement techniques revealed substantial disparitigsow (Scheel et al., 1990). TH&?Rn measuring programme
between the chamber and the micrometeorological methodstarted in 1999 and serves mostly to classify air masses
(Gustin and Lindberg, 2000). In addition to all these chal-into maritime, continental or mixed (Brunke et al., 2004).
lenges, field flux measurements have so far been carried oaseous mercury concentrations had been measured inter-
almost exclusively in temperate regions of North America mittently (about 200 samples per year) since September 1995
and Europe. Their up-scaling to other regions in the North-until December 2004 (Slemr et al., 2008) and have been
ern and Southern Hemisphere is thus necessarily fraught witkkontinuously with a resolution of 15 min since March 2007
large additional uncertainties. (Brunke et al., 2010). Only the high-resolution data until the
222Rn is a radioactive gas of predominantly terrestrial ori- end of 2011 were used in this work.
gin with a half-life of 3.8 days. Its emission rate from soil ~ Continuous measurements of gaseous mercury are made
is relatively evenly distributed (Zhang et al., 2011 and ref-using a Tekran 2537A vapour-phase mercury analyser
erences therein) makimf?Rn a good tracer for studies of (Tekran Inc., Toronto, Canada). The Tekran 2537A is capa-
emissions from terrestrial surfaces (Zahorowski et al., 2004)ble of measuring low-level mercury concentrations typically
According to Jacob et al. (1997), the assumption of a uni-observed at background locations (Ebinghaus et al., 1999;
form 22?Rn emission rate of 1atomcrAs! is accurate to  Munthe et al., 2001). The analyzer is operated in an air-
roughly 25 % globally, or by a factor of 2 regionalkf°Rn conditioned laboratory and run with a sampling air flow rate
has been successfully used to derive regional emissions aff 1L min—! at 15 min sampling intervals. The span of the
COy, CHy, and NO (e.g. Gaudry et al., 1990; Wilson et al., analyzer is checked by an internal permeation source once
1997; Zahorowski et al., 2004; Hirsch, 2007). To the best ofevery 25h. The permeation rate of the internal permeation
our knowledge, its only application to mercury flux estima- source was determined by repeated injections of mercury sat-
tions has been reported by Obrist et al. (2006). They foundurated vapour from a primary mercury source (Tekran Model
good agreement between fluxes estimated from the accum®505) and was found to be stable within 2% over the period
lation of Hg anc???Rn in the stable nocturnal boundary layer of the measurements. The air sample intake was attached to
and those measured by the modified Bowen ratio micrometea 30 m high aluminium sampling mast at a height of approx-
orological technique. The major advantage of theZPfn imately 5 m above the rocky surface and about 235 m above
method is its capability to estimate regional fluxes and by thissea level. A Teflon filter (pore size 0.2 um; B 45 mm)
its capability to avoid shortcomings related to up-scaling of upstream of the instrument protects the analyzer against con-
point measurements in the field (Wilson et al., 1997; Obrist ettamination by particulate matter. The filter was replaced once
al., 2006). In this paper we use concurrent measurements avery two weeks. The 15 min TGM data have been converted
gaseous elemental mercury a#fdRn at Cape Point, South to 30 min averages so that comparisons v&fRn, other
Africa, to derive the regional mercury flux from southern trace gas and meteorological data being measured simultane-
Africa. ously at Cape Point could be made. Under the prevailing at-
mospheric conditions at Cape Point (higher temperature and
air humidity, in addition to hygroscopic sea salt aerosols),
2 Experimental we assume that reactive gaseous mercury (RGM) will be
adsorbed by the inlet tubing and the aerosol filter and that
The Cape Point station (321’ S, 1829 E) is part of the  the measured atmospheric mercury concentration thus repre-
World Meteorological Organization’s (WMO) Global Atmo- sents exclusively gaseous elemental mercury (GEM) (Brunke
sphere Watch (GAW) network. Cape Point is about 60 kmet al., 2010). All GEM concentrations are given in ng
south of Cape Town, and located on top of a coastal cliff(STP, i.e. at 273.2K and 1013 hPa). The precision of the 30
230 m above sea level at the southernmost tip of the Capenin GEM measurements was0.035 ng n2 and their over-
Peninsula. The site is located in a nature reserve and exall uncertainty including the uncertainty of the permeation
periences moderate temperatures, dry summers with occaate and the sampling flow calibrationsb %.
sional biomass burning episodes in the surrounding area and Since 1999 &#22Rn detector designed by the Australian
increased precipitation during austral winter. The dominantNuclear Science & Technology Organisation (ANSTO) and
wind direction is from the south-eastern sector, which is rep-manufactured by AGH Industries (Riverwood, Australia) has
resentative of clean maritime air from the Southern Ocearbeen installed at Cape Point. The so-called two-filter instru-
(Brunke et al., 2004). The site is occasionally also subjectednent is described in detail by Whittlestone and Zahorowski
to air from the northern to north-eastern sector (mainly dur-(1998) and Brunke et al. (2002) and was run with 30 min
ing austral winter), which is influenced by anthropogenic resolution. Briefly, radon and thoron decay products are re-
emissions from the greater Cape Town area and/or by othemoved from the air by the first filter. Decay products newly
continental sources (both local and regional). formed under controlled conditions in the instrument de-
Within the framework of the WMO-GAW programme, lay tank are then retained by a second filter. Their alpha
continuous trace gas measurements obCCH,, CO and radiation is determined by a zinc sulfide scintillator. The
O3 have been made at Cape Point for more than 30yr
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Fig. 1. Monthly frequency of events wit§22Rn concentrations

> 1000 mBg 2 (“all") and those with significant GEM vé2?Rn  Fig. 2. Frequency distribution of all HE#2Rn slopes and only of
correlations (“significant”). those which are significant.

detection limit of the instrument at Cape Point is quoted to, . .
be 33mBq m3 (Brunke et al., 2002). is thus substantially longer than that of the depletion events

Hg vs.222Rn was correlated using orthogonal regression®" (€ typical pollution plumes observed at Cape Point,

(Cantrell, 2008), which takes the uncertainties of both corre—WhiCh generally last only several hours (Brunke et al., 2010,

lated parameters into account. Factors affecting the sensitivlgmz)' L{{sw:jg tlme_ser:es an_d stc te;\tte(rjploltst_, this d|ff?retnhce al-
ity and accuracy of the Cape PofffRn detector have been (r)]ws us to discniminate ag;uns e efp N 'Ot?. even S'b € an-
discussed by Brunke et al. (2002) and by references therei ropogenic Emissions and emission from blomass burning.

For the correlations here, the GEM affdRn uncertainties .ifty-six_ events with ephance%?an c oncentrations coin-
were set to 0.05ngn? and 50 mBqm?3, respectively. As cided with such depletion and pollution events. These short

222Rn is always emitted, the positive slope sign stands fordepletlon and pollution events were eliminated for the subse-

mercury emissions and the negative one for mercury depoghueezggsgfﬂzz'ﬁtsf the relationship between Hg &f&n in

sition. The mean values throughout the paper are given witﬁ . C
the standard errors of the mean instead of the more common F'guzrgz 2 shows the frequency Q|str|but|on of the
EM/<““Rn slopes from the correlations. In 94 events

standard deviations of individual measurements. th lati inaful at least at the 95% si
The regions of origin for the pollution events were in- ,]f CorreT|or}s _‘I’_Vﬁre. mgar)]:ng Ut a eEIISt'a fe > o Sig-
terpreted using ten-day isentropic back trajectories fromncance fevel. the insigniicant correrations for-the re-
maining events may either imply that there is no relation

NOAA ESRL (Earth System Research Laboratory of Na- . .
tional Oceanic and Atmospheric Administratidrtp://www. whatsoever or ”;2‘ the GEM concentration remains con-
esrl.noaa.gov/gmdand seven-day back trajectories calcu- star)t during thez. Rn event. Figure 2.shows that the lat-
lated by NILU (Norwegian Institute for Air Research) us- ter is the case, i.e. that the Iargestl\%ggerence between the
; . : ; frequency of all and significant GEM#“Rn slopes is in
ing the FLEXTRA model lfttp://www.nilu.no/projects/ccc/ S

g ttp pro) the bin with the central value of 0.00 pgmB (—0.01

trajectories). to +0.01 pg mBq?), followed by the bins with the central
values—0.02,+0.02, and+0.04 pg mBq?. In the remain-

3 Results and discussion ing bins almost all correlations are significant. Thus the 97
events with insignificant GEM vs???Rn correlations and

Altogether 191 events witf?°Rn concentrations above a slope close to zero still provide meaningful information

1000 mBqg T3, which lasted usually for more than a day, about the net GEM flux between the surface and the atmo-

have been identified between March 2007 and Decembesphere, and we have included them in subsequent analyses.

2011. Their seasonal occurrence frequency is shown ifThe average GEM#2Rn slope of all 191 events is0.0001

Fig. 1. Most of them occur in the months March—September,+£0.0030 pg mBq?, which is statistically indistinguishable

in agreement with the seasonal variation of wind directionfrom the average of-0.0057+0.0051pg mBg' for 94

at Cape Point (Brunke et al., 2004). The events can exten@vents with significant correlations. Both averages cannot be

up to 7 days, but most of them last 2—4 days. Their durationstatistically distinguished from zero flux.
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Precipitation is known to stimulate the emission of mer-
cury from soils, especially in arid regions (e.g. Song and Van
Heyst, 2005; Cobbett et al., 2007; Xin et al., 2007). There-
fore, the occurrence of precipitation along the backward tra-
jectories was investigated for 7 of the events with the high-

1 est emission and 5 events associated with the highest depo-
03 L L I S sition. The events with the highest emission were more fre-

Slope [pg mBq™]

1400 — s . ; ; ’ : . : ’ 1400 . . . .
g . ; quently connected to intermediate rain over southern Africa
€ 1000] ’.,_.ﬂl é{%-? "':j"-..l"-ﬁ--*-::'ﬂ.-.-% . .!r »] 1000 (4 events) than those with highest deposition (1 event), sug-
g oot AR J’.ﬁ"" “fr'r' L ) gesting indeed some degree of stimulation of mercury emis-
5 23‘;* e ) ijzg sions by precipitation.

S ol e The terrestrial surface of southern Africa is presumed
E . 4 to emit about 1.1%2°Rnatomscm?s~! corresponding
Jan  Mar  May Jul Sep  Nov to 23.1mBgm? s 1 (Zhang et al., 2011). With this

_ o emission rate, the radon-calibrated GEM flux of south-

Fig. 3. Seasonal variation of the GEM#2Rn slopes (upper panel) orn Africa varied between-8.7 and +14.8ngn2h-L.

and the intercepts (bottom panel). The un-weighted average GEMEPRn flux ratio of all
events of —0.0001+ 0.0030 pg mBg! corresponds to a

2 -1 :

Figure 3 shows the slopes and the intercepts of all GEMﬂU)f ;f d_o'01i0'éi?\%£; 2 : 'I;he fevﬁnt dl:ratlon
vs. 222Rn correlations in the upper and lower panel, re- Wg'% Of&%’ggafle Bal n Tlux ra Ido' 0 ta theVZnET\/I v]tllas
spectively. The intercepts represent the background mercury_.” " : PgmBQ- corresponding to the ux

2p—1 222 )
concentrations at Cape Point. They vary between 0.69 an f _0'40_i0'09 ngm: h™=. “*Rn de(_:ay has not been con
1.15ngn3 and average 0.92-0.01ngnT3 for all corre- sidered in these estimates. Assuming an average transport

lations and 0.93 0.01 ng m3 for the significant ones. The time of 2 days (corresponding to a transport distance of

intercepts do not show any apparent seasonal variation. Th§61090t% krg)btlfi ggio#g?r:lzu?vla;gf;vnoEI:x;;eﬁzz t:].\q/eaat:]out
0 —VU. . -

slopes vary between0.105 and0.178 pg mBq*, and they 21 . .
also do not show any pronounced dependency on seasoéﬁ’l‘gl(qjs_O"r"HE0'13 ngnT=h~ if weighted with event dura-
A plot of the sl inst the int t t sh I :

plot of the slopes against the intercepts (not shown) also To the best of our knowledge, we are not aware of any

does not reveal any dependence of the flux on backgroun .
y cep g ?ong-term measurements of mercury species over southern

GEM concentration. However, the average of slopes for theAf ) Th " RGM t
austral autumn—winter months (April to September) is nega- rica. The reactive gaseous mercury ( ) concentra-

tive and with—0.0091+ 0.0032 pg mBqZ (1 = 72) signifi- tion in the marine boundary layer around southern Africa is

cantly lower (at> 99.9 % confidence level) than the positive smaller thar:) 7pgm? (Soerensen et al._, 2010a) representing
average for the spring—summer period (October to March)Iess than 1% of the GEM concentration. Because of much
of +:0.0150+ 0.0056 pg mBq™ (n = 119). This is consistent lower halogen concentrations in Fhe continental boundary
with the expected temperature dependence of fluxes, but thlg\yer, even lower RGM concentrations can be expected over

stimulation of the flux by seasonally variable precipitation in southern Afrl_ca. As_sumlng that the concentration of particu-
the interior of southern Africa with its maximum in the sum- late mercury is within the same range (Slemr etal., 1985), the

mer months may also contribute. contribution of RGM and particulate mercury dry deposition

Two backward trajectories for ti82Rn events are shown could still be significant because of their much higher de-
in Fig. 4: one for 12:00UTC of 10 February 2008 (left position velocities (Selin et al., 2007). In fact, modelled dry

. deposition of RGM for southern Africa is comparable to that
panel), and the other for 12:00UTC of 30 March 2007 . 1 .
(right panel). Both look similar and are typical for most of for GEM, each ranging from about 1 to 5 ngfth™* (Smith- .
the 222Rn events presented here. They encompass usua"gowney et al., 2010). The occurrence of GEM depletion
South Africa and the neighbouring countries of Namibia vents at Cape Point was reported by Brunke etal. (2010), but
Botswana, Zimbabwe, and Mozambique. The GERFRN " their mechanism remains obscure. With some 50 events per
flux ratio V\’/as+0.077i’0.008 pgmBq for the event on 10 year lasting on average 5 h, they are unlikely to contribute

substantially to the mercury flux even if all GEM were con-

February 2008. However, the event on 30 March 2007 (the ted to RGM and/or t dculat dd ted
lowest of all events with significant correlations) had a flux verted to andjor 1o particulate mercury and deposited.

ratio of merely—0.026- 0.005 pg mBq. This and the tra- The terrestrial surface of southern Africa might be
jectory analysis of other events could not reveal any systemgu"[e unique due to its arid characteristics and as a re-

atic dependence of the terrestrial flux ratios on backward tra—suu of its location in the Southern Henglserlpre. Our un-
jectories. weighted average flux 6£0.01+ 0.34 ngnT<h~* is smaller

than 0.4£0.5ngm?h~1 measured over a period of 1yr
on the forest floor in Standing Stone State Forest in

Atmos. Chem. Phys., 13, 64256428 2013 www.atmos-chem-phys.net/13/6421/2013/
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Fig. 4. Backward trajectory for 12:00 of 10 February 2008 (left panel), and 12:00 of 30 March 2007 (right panel). The?&RN flux
ratio was+0.077+ 0.008 pg mBq 1 for the event on 10 February 2008, an6).026-+ 0.005 pg mBq ! for the event on 30 March 2007.

Tennessee (Kuiken et al., 2008a) but within the uncertaintyand Mason (2013). Assuming an average wet deposition
of 0.2+0.9ngnm?h~1, measured at six forested sites in flux of —1.01ngnT?h~1 to be representative of southern
different states of the eastern USA (Kuiken et al., 2008b).Africa and the event duration weighted dry GEM flux of
Substantially larger average net emissions of 1.71 (esti—0.54+0.13ngnT2h~1 from this work, the net deposition
mate from 1.14 to 4.55) and 1.60 (estimate from 0.86 toover southern Africa would be aboutl.55ng m2h—1. Ad-
3.20)ngnT?h~! can be derived from Table 7.5 of the com- ditional unknown deposition of RGM and particulate mer-
pilation by Mason (2009) for deserts/metalliferrous zonescury would further increase the net deposition. The terres-
and savannah regions, respectively, in tropical/subtropical retrial surface of southern Africa thus seems to be a net sink
gions. for atmospheric mercury. The GEOS model by Selin et
The radon-calibrated GEM fluxes derived by us do not in-al. (2008) predicts soils to be a net mercury sink of some
clude mercury wet deposition. Precipitation measurements-0.61 ngnt2h~1, if re-emission by biomass burning is ex-
at Cape Point and Pretoria in 2007-2009 yield an avercluded and the flux to all terrestrial surfaces is considered
age wet deposition 0f-1.01 and—2.32ngm? h=1, re- to be the same. The exclusion of biomass burning is justi-
spectively (Gichuki and Mason, 2013). The GEOS modelfied, since we excluded the short pollution events from our
by Selin et al. (2008) predicts a wet deposition flux of radon-calibrated fluxes. The model-predicted net deposition
about—0.34 to —0.11ngnT2h~1 for pre-industrial times rate is thus smaller than our radon-calibrated fluxes. Speci-
in southern Africa and an enrichment factor €f4 due  ated mercury measurements and more data on wet deposition
to anthropogenic activities yielding a current deposition of in southern Africa would further constrain the uncertainty of
about—1.37 to—0.46 ngnT2h~1. A soil model by Smith-  the net mercury deposition in this area.
Downey et al. (2010) predicts a wet deposition rate rang-
ing from~ —0.5ngnT2h~1 in the vicinity of Cape Point to
—4.6ngnT2h~1 in the industrial region around Johannes- 4 Conclusions
burg. Animproved GEOS model by Soerensen et al. (2010b)

predicts a wet deposition flux 6f1.10ng nr2h~1 for Cape  Radon-calibrated fluxes of mercury over the terrestrial sur-
Point. Thus the wet deposition predicted by models is inface of southern Africa were derived from concurrent mea-
reasonable agreement with the measurements of Gichukdurements of GEM antf?Rn at Cape Point between March

www.atmos-chem-phys.net/13/6421/2013/ Atmos. Chem. Phys., 13, 64824128 2013
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2007 and December 2011. The average dry GEM fluxThe service charges for this open access publication

over this period was-0.014+0.34ngnT2h~1, and the av-  have been covered by the Max Planck Society.

erage weighted by event duration wa6.54+ 0.13 ng nT?

h=1 (standard error witl = 191, both after correction for ~Edited by: T. Karl

222Rn decay). No pronounced seasonal flux variation was

observed, but the average flux for spring—summer months

(October—March) is positive and significantly different from References
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