ANSTO/E-774



**Australian Government** 

**Gansto** Nuclear-based science benefiting all Australians

Calculated K, L and M-shell X-ray line intensities for light ion impact on selected targets from Z=6 to 100.

by

Jagoda Crawford, David Cohen, Greg Doherty, Armand Atanacio

Prepared within the Institute for Environmental Research Australian Nuclear Science and Technology Organisation

September 2011

### Abstract

A computer code to calculate the K, L, and M  $\alpha$ ,  $\beta$  and  $\gamma$  X-ray line intensities, *KLMabgRatios*, is described together with the input tables used to calculate these intensities for light ion bombardment of targets with atomic numbers from Z=6 to 100. The *KLMabgRatios* program was written with the main aim of updating the 1980's data files used up till now (Clayton AAEC M113/1986), with more recent experimental and theoretical datasets published in the last 2 years or so. Preferred recommended K, L and M X-ray line intensities for light ion impact on selected targets for atomic numbers between Z=6 and 100 are given for 8 K lines, 17 L lines and 22 M lines as well as their corresponding  $\omega_{K}$ ,  $\omega_{L}$  and  $\omega_{M}$  total shell fluorescence yields.

In addition a program, *wexplore*, has been written to carry out Gaussian fits to experimental K, L and M X-ray spectra to better determine L and M X-ray production subshell cross sections for light ion bombardment. A section on the use of this *wexplore* program is also included in this report.

**Keywords:** PIXE, K, L, M X-ray line intensities, X-ray cross sections

ISSN 10307745 ISBN 1921268131

# Table Of Contents

| 1  | Intr          | oduction                                                                          | 1                       |
|----|---------------|-----------------------------------------------------------------------------------|-------------------------|
| 2  | K, L          | and M shell X-ray Line Intensities                                                | 1                       |
|    | 2.1           | K Shell X-ray production cross sections                                           | 2                       |
|    | 2.2           | L Shell X-ray production cross sections and total fluorescence yield              | 2                       |
|    | 2.3           | M Shell X-ray production cross sections and total fluorescence yield              | 3                       |
| 3  | Usir          | ng program KLMabgRatios                                                           | 4                       |
|    | 3.1           | Files for PIXAN                                                                   | 5                       |
|    | 3.2           | L and M shell Spectra                                                             | 6                       |
| 4  | Prog          | gram wexplore - fitting Gaussians                                                 | 6                       |
| 5  | KLN           | IabgRatios Examples                                                               | 9                       |
|    | 5.1           | Sample Run                                                                        | 9                       |
|    | 5.2           | Uranium                                                                           | . 11                    |
| 6  | Sum           | nmary                                                                             | .13                     |
| 7  | Refe          | erences                                                                           | .14                     |
| 8  | App           | endix 1: Files for K shell calculations                                           | .16                     |
| -  | 8.1           | K shell atomic mass and edges                                                     | . 16                    |
|    | 8.2           | K shell emission rates                                                            | . 19                    |
|    | 8.3           | K shell fluorescence yield                                                        | . 19                    |
| 9  | App           | endix 2: Files for L shell calculations                                           | .26                     |
|    | 9.1           | L shell atomic mass and edges                                                     | . 26                    |
|    | 9.2           | L shell emission rates                                                            | . 28                    |
|    | 9.2.1         | File LsubshellEmissionRatesScofieldDHF-15Feb11.txt                                | 28                      |
|    | 9.2.2         | L shall fluoreseenee yield and Coster Kronig probabilities                        |                         |
|    | 9.5           | L shell total fluorescence yield                                                  | · 40                    |
|    | 9.4           | L shell Energies                                                                  | 45                      |
| 1  | л.<br>Ола     | nnendir 3. Files for M shell calculations                                         | 18                      |
| 1  | ил<br>101     | M shall adge energies                                                             | . <del>7</del> 0<br>/18 |
|    | 10.1          | M shell amission rates                                                            | , <del>4</del> 0<br>/10 |
|    | 10.2          | 1 DHS emission rates                                                              | 49                      |
|    | 10.2.         | 2 DF emission rates                                                               | 52                      |
|    | 10.3          | M shell Fluorescence Yield                                                        | . 54                    |
|    | 10.4<br>10.4. | M shell Coster-Kronig probabilities<br>File MsubshellSuperSijBambynekat4Mar11.txt | . <b>56</b><br>56       |
|    | 10.4.         | 2 File MsubshellCKfijsat28Feb11.txt                                               | 57                      |
|    | 10.5          | M shell characteristic X-ray energies                                             | , 58                    |
| 1. | 1 A           | ppendix 4: Miscellaneous input files                                              | .61                     |

| 12   | Appe  | ndix 5: Output files                             |    |
|------|-------|--------------------------------------------------|----|
| 12.1 | Ca    | lculated Intensities – file results.csv          |    |
| 1    | 2.1.1 | Run options                                      |    |
| 1    | 2.1.2 | K shell X-ray line intensities for 3 MeV protons | 63 |
| 1    | 2.1.3 | L shell intensities                              |    |
| 1    | 2.1.4 | M shell X-ray line intensities for 3 MeV protons |    |

# List of Figure

| Fig. 1: Determination of background for M shell lines from 2 MeV proto | ns on gold9 |
|------------------------------------------------------------------------|-------------|
| Fig. 2: Theoretical L shell spectrum for 3 MeV protons on uranium      | 11          |
| Fig. 3: Theoretical M shell spectrum for 3 MeV protons on uranium      | 12          |
| Fig. 4: Experimental M shell spectrum for 2 MeV protons on uranium     |             |

## List of Tables

| Table 1: L subshell ionisation cross sections for 2 MeV protons on W and Table 2: M subshell ionisation cross sections for 2 MeV protons on W and | U.2<br>d U. |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Table 2: Uranium Line operators and intensities for 2 MoV protons _ ECDS                                                                          | 2           |
| Table 5. Oranium Line energies and intensities for 5 mev protons – ECFC                                                                           | 11          |
| Table 4: Information for 3 MeV protons for the L and M shells                                                                                     | 11          |
| Table 5: Uranium M line energies and intensities for 3 MeV protons –                                                                              | 40          |
| Table 6: Inputs for K shell ECPSSP cross sections                                                                                                 | 1Z          |
| Table 7: K shell fluorescence vield                                                                                                               | 10          |
| Table 8: K shell characteristic X-ray energies                                                                                                    | 17          |
| Table 9: L shell edges.                                                                                                                           | 26          |
| Table 10: L shell emission rates, L1 Subshell, (Scofield, 1974)                                                                                   | 29          |
| Table 11: L shell emission rates, L2 SubShell, (Scofield, 1974).                                                                                  | 30          |
| Table 12: L shell emission rates, L3 SubShell, (Scofield, 1974)                                                                                   | 33          |
| Table 13: L shell emission rates, L1 and L2 SubShells, (Salem 1974)                                                                               | 35          |
| Table 14: L shell emission rates, L3 SubShell, (Salem 1974).                                                                                      | 38          |
| Table 15: L shell fluorescence yield and Coster-Kronig probabilities                                                                              | 40          |
| Table 16: L shell Krause f <sub>1,3</sub> Coster-Kronig probabilities.                                                                            | 43          |
| Table 17: L shell total fluorescence yield.                                                                                                       | 44          |
| Table 10: L Shell characteristic A-ray Energies                                                                                                   | 43          |
| Table 20: M shell DHS emission rates (part I)                                                                                                     |             |
| Table 21: M shell DHS emission rates (part I).                                                                                                    |             |
| Table 22: M shell DF emission rates (part I).                                                                                                     |             |
| Table 23: M shell DF emission rates (part II)                                                                                                     | 53          |
| Table 24: M shell fluorescence yield.                                                                                                             | 54          |
| Table 25: M shell Super Coster-Kronig probabilities.                                                                                              | 56          |
| Table 26: M shell Coster-Kronig probabilities                                                                                                     | 57          |
| Table 27: M shell characteristic X-ray energies.                                                                                                  |             |
| Table 28: Electron binding energies in keV (part I).                                                                                              | 59          |
| Table 29: Electron binding energies in KeV (part II).                                                                                             | 60          |
| Table 31: Sample I shell calculated intensities for 3 MeV protons                                                                                 | 03<br>66    |
| Table 32: Sample M shell calculated intensities for 3 MeV protons (part I)                                                                        | 68          |
| Table 33: Sample M shell calculated intensities for 3 MeV protons (part II)                                                                       | 69          |

### 1 Introduction

Proton induced X-ray emission (PIXE) analysis has been used for many years for the determination of elemental composition of materials using X-rays (e.g. PIXAN; Clayton 1986). One of the steps in the analysis is to fit the measured X-ray spectrum given the relative yield intensities for the material characteristic X-ray energies. The PIXAN program has been used since its development in the 1980s and continues to be used at ANSTO. The data tables used by PIXAN were published in 1986 (Cohen and Harrigan, 1986). Since that time a number of new datasets have been published (e.g. Campbell; 2003, 2009). The program, *KLMabgRatios*, described in this report has been written to update the tables used by PIXAN, to include the latest K, L and M subshell data for selected elements with atomic numbers Z between 6 and 100.

The program *KLMabgRatios* has been written to calculate the X-ray line intensities for the K, L and M shells for proton, deuterium and helium bombardment of selected elements in the periodic table. The data needed for the calculation are stored into a number of files which are read by the program based on the user specified options. Two of the dataset files required by PIXAN, *dset2* and *dset4*, are then generated based on the selected options and the updated datasets. The file *dset2* is used for the Gaussian peak fitting routines by the least squares fitting program BATTY (Clayton, 1986) to determine X-ray line peak areas and the *dset4* file is required by THIN and THIK (Clayton, 1986) programs to convert these peak areas to elemental concentrations for thin and thick targets.

In addition a program, *wexplore*, has been written to carry out Gaussian fits to experimental spectra, particularly for M subshell analysis where more than a dozen Gaussian X-ray lines can be resolved by modern detectors. A section describing *wexplore* and its use is also included in this report.

### 2 K, L and M shell X-ray Line Intensities

For thin targets, the line intensity for a peak p is proportional to the X-ray production cross section,  $\sigma_p^x$ . The constant of proportionality is not needed if, for each shell, the intensities of each line are calculated relative to the primary K, L or M  $\alpha = (\alpha_1 + \alpha_2) = 100$  line, as such quantities as solid angle, beam curent etc. which are needed for yield calculations, cancel out when these ratios are used. In the following three sections the equations and data files used in the calculation of the production cross sections are given. For each of the K, L and M shells the relative X-ray line intensities are then generated by the ratio between the calculated production cross section for the given line to the sum of the  $\alpha_1$  and  $\alpha_2$  production cross section.

The ionization cross sections,  $\sigma_{K,L}^{l}$ , are calculated in the ECPSSR theory (Cohen and Harrigan, 1985), which uses the plane-wave Born approximation (PWBA) with corrections for energy loss (E), Coulomb deflection (C), perturbed-stationary-state (PSS), and relativistic (R) effects. The M-shell ionization cross sections are calculated using the Coulomb corrected Plane-Wave Borne-Approximation (CPWBA) according to Johnson et al. (1979) with corrections for Coulomb deflection according to the Brandt and Lapicki formalism (Brandt and Lapicki 1979).

The different theories for ionisation cross sections do differ slightly; however the different parameter sets used to convert ionisation cross sections to X-ray productions cross sections generally produce significantly larger variations than those between ECPSSR, CPWBA and ECUSAR theories. Generally to minimise these differences between theories we normalise the K, L and M subshell  $\alpha$ ,  $\beta$  and  $\gamma$  lines to their corresponding  $\alpha = (\alpha_1 + \alpha_2)$  lines.

Tables 1 and 2 show the typical differences between theories for L and M subshell ionisation cross sections by 2 MeV protons on W (Z=74) and U (Z=92).

| 2MeV             | L shell ion   | isation cross | L shell ionisation cross |        |
|------------------|---------------|---------------|--------------------------|--------|
| protons          | sectio        | ons (b)       | sectior                  | ns (b) |
|                  | W (2          | Z=74)         | U (Z=                    | =90)   |
|                  | PWBA          | ECPSSR        | PWBA                     | ECPSSR |
| L <sub>1</sub>   | 13.84         | 13.65         | 0.8621                   | 0.7506 |
| L <sub>2</sub>   | 43.17         | 38.45         | 2.762                    | 2.729  |
| L <sub>3</sub>   | 148.43 131.80 |               | 16.898                   | 15.660 |
| L <sub>tot</sub> | 205.44 183.90 |               | 20.522                   | 19.140 |

 Table 1: L subshell ionisation cross sections for 2 MeV protons on W and U.

 Table 2: M subshell ionisation cross sections for 2 MeV protons on W and U.

| 2MeV             | M she    | ell ionisation | n cross sect | ions (b) | M shell ionisation cross sections (b) |        |        |        |
|------------------|----------|----------------|--------------|----------|---------------------------------------|--------|--------|--------|
| protons          | W (Z=74) |                |              |          | U (Z=90)                              |        |        |        |
|                  | PWBA     | CPWBA          | ECPSSR       | ECUSAR   | PWBA                                  | CPWBA  | ECPSSR | ECUSAR |
| $M_1$            | 7,063    | 6,895          | 6,366        | 6,362    | 668                                   | 639    | 566    | 618    |
| M <sub>2</sub>   | 7,930    | 7,725          | 7,194        | 7,686    | 873                                   | 837    | 759    | 835    |
| M <sub>3</sub>   | 21,109   | 20,652         | 19,297       | 20,558   | 3,305                                 | 3,183  | 2,934  | 3,163  |
| $M_4$            | 30,587   | 30,086         | 27,689       | 29,649   | 4,372                                 | 4,233  | 3,902  | 4,062  |
| M <sub>5</sub>   | 49,517   | 48,587         | 44,904       | 48,145   | 7,512                                 | 7,296  | 6,724  | 7,009  |
| M <sub>tot</sub> | 116,206  | 113,945        | 105,450      | 112,400  | 16,729                                | 16,187 | 14,886 | 15,687 |

### 2.1 K Shell X-ray production cross sections

The X-ray production cross sections for the K-shell are related to the ionization cross section by, (Cohen and Harrigan, 1986):

$$\sigma_{K_{\alpha}}^{x} = \left(\frac{\Gamma_{K_{\alpha}}}{\Gamma_{K}}\right) \omega_{K} \sigma_{K}^{I}$$
(1)

and

$$\sigma_{K\beta}^{x} = \left(\frac{\Gamma_{K\beta}}{\Gamma_{K}}\right) \omega_{K} \sigma_{K}^{I}$$
(2)

Where  $\omega_{\rm K}$  is the K-shell fluorescence yield,  $\sigma_{\rm K}^{\rm I}$  is the K-shell ionization cross section,  $\Gamma_{\rm K_{\alpha}}, \Gamma_{\rm K_{\alpha}}, \Gamma_{\rm K}$  are the  $\alpha, \beta$  and total K-shell emission rates, respectively.

The K-shell fluorescence yield ( $\omega_K$ ) can be selected from one of four tables:

- Bambynek et al. (1972), experimental values
- Krause (1979), experimental values
- Walters and Bhalla (1971)
- Chen and Craseman (1980).

The emission rate can be either Scofield (1974a) DF theory or Salem (1974), experimental.

### 2.2 L Shell X-ray production cross sections and total fluorescence yield

The L-shell X-ray production cross sections for the three L-subshells are related to the L-subshell ionization cross sections  $\sigma_{Li}^{I}$  (*i*= 1, 2, 3) as follows (Cohen and Harrigan, 1986):

$${}^{1}\sigma_{Lp}^{x} = \sigma_{L1}^{I}\omega_{L1}\left(\frac{\Gamma_{Lp}}{\Gamma_{L1}}\right), p = \beta_{3}, \beta_{4}, \gamma_{2}, \gamma_{3}, \gamma_{44}, p_{23}$$
(3)

$${}^{2}\sigma_{Lp}^{x} = \left(\sigma_{L1}^{I}f_{L1,2} + \sigma_{L2}^{I}\right)\omega_{L2}\left(\frac{\Gamma_{Lp}}{\Gamma_{L2}}\right), p = \beta_{1}, \eta, \gamma_{1}, \gamma_{5}, \gamma_{6}$$

$$\tag{4}$$

$${}^{3}\sigma_{Lp}^{x} = \begin{pmatrix} \sigma_{L1}^{I} (f_{L1,2}f_{L2,3} + f_{L1,3} + f_{L1,3}^{'}) + \\ \sigma_{L2}^{I}f_{L2,3} + \sigma_{L3}^{I} \end{pmatrix} \omega_{L3} \left(\frac{\Gamma_{Lp}}{\Gamma_{L3}}\right), p = \alpha_{1}, \alpha_{2}, \beta_{5}, \beta_{6}, \beta_{215}, l$$
(5)

The ECPSSR L-subshell ionization cross sections ( $\sigma_{Li}^{I}$ , i = 1, 2, 3) are calculated using the codes of Cohen and Harrigan (1985). The L-subshell fluorescence yield ( $\omega_{Li}$ , i=1, 2, 3) can be optionally selected from Krause (1979) or Campbell (2003, 2009). The  $f_{Li,j}$  are the L-shell Coster-Kronig probabilities and these can optionally be selected from Krause (1979) or Campbell (2003, 2009).  $\Gamma_{Lp}$  is the L-subshell emission rate for line p and  $\Gamma_{Li}$ , i = 1, 2, 3, is the total emission rate for the Lsubshell *i*.e. L-subshell emission rates can be selected from the theoretical values of Scofield (1974b) or the experiment dataset of Salem et al. (1974)

The program also calculates the L-subshell effective fluorescence yield as follows:

$$v_{L1} = \omega_{L1} + f_{L1,2}\omega_{L2} + (f_{L1,3} + f_{L1,2}f_{L2,3})\omega_{L3}$$
(6)

$$v_{L2} = \omega_{L2} + f_{L2,3}\omega_{L3} \tag{7}$$

$$v_{L3} = \omega_{L3} \tag{8}$$

$$\omega_L = \frac{\sum_{i=1}^{3} v_{Li} \sigma_{Li}^{I}}{\sum_{i=1}^{3} \sigma_{Li}^{I}}$$
(9)

#### 2.3 M Shell X-ray production cross sections and total fluorescence yield

The M-shell production cross sections for the five M-subshells are related to the M-subshell ionization cross sections  $\sigma_{Mi}^{l}$  (*i*= 1, 2, 3, 4, 5) as follows:

$${}^{1}\sigma_{Mp}^{x} = \sigma_{M1}^{I}\omega_{ML1}\left(\frac{\Gamma_{Mp}}{\Gamma_{M1}}\right), p = M1 - N23, M1 - O23$$
(10)

$${}^{2}\sigma_{Mp}^{x} = \left(\sigma_{M1}^{I}f_{M1,2} + \sigma_{M2}^{I}\right)\omega_{M2}\left(\frac{\Gamma_{Mp}}{\Gamma_{M2}}\right), p = M2 - N1, M2 - O1, M2 - O4, M2 - N4$$
(11)

$${}^{3}\sigma_{Mp}^{*} = \left(\sigma_{M1}^{I}\left(f_{M1,2}f_{M2,3} + f_{M1,3}\right) + \sigma_{M2}^{I}f_{LM2,3} + \sigma_{M3}^{I}\right)\rho_{M3}\left(\frac{\Gamma_{Mp}}{\Gamma_{M3}}\right),$$
  

$$p = M3 - N1, M3 - N2, M3 - O1, M3 - O45, M3 - N5, M3 - N4, M3 - N67$$
(12)

$${}^{4}\sigma_{Mp}^{x} = \begin{pmatrix} \sigma_{M1}^{I} (f_{M1,4} + f_{M1,2}f_{M2,4} + f_{M1,3}f_{M3,4} + f_{M1,2}f_{M2,3}f_{M3,4}) + \\ \sigma_{M2}^{I} (f_{M2,4} + f_{M2,3}f_{M3,4}) + \sigma_{M3}^{I}f_{M3,4} + \sigma_{M4}^{I} \end{pmatrix} \omega_{M4} \left(\frac{\Gamma_{Mp}}{\Gamma_{M4}}\right),$$
(13)

p = M4 - N2, M4 - N3, M4 - N6, M4 - O3, M4 - O2

$${}^{5}\sigma_{Mp}^{x} = \begin{pmatrix} \sigma_{M1}^{I} \begin{pmatrix} f_{M1,5} + f_{M1,2}f_{M2,5} + f_{M1,3}f_{M3,5} + f_{M1,4}f_{M4,5} + \\ f_{M1,2}f_{M2,3}f_{M3,5} + f_{M1,2}f_{M2,4}f_{M4,5} + f_{M1,3}f_{M3,4}f_{M4,5} + \\ f_{M1,2}f_{M2,3}f_{M3,4}f_{M4,5} \end{pmatrix} \\ \sigma_{M2}^{I} \begin{pmatrix} f_{M2,5} + f_{M2,4}f_{M4,5} + f_{M2,3}f_{M3,5} + f_{M2,3}f_{M3,4}f_{M4,5} \end{pmatrix} \\ \sigma_{M3}^{I} \begin{pmatrix} f_{M3,5} + f_{M3,4}f_{M4,5} \end{pmatrix} + \sigma_{M4}^{I}f_{M4,5} + \sigma_{M5}^{I} \end{pmatrix} \end{pmatrix} \\ \omega_{M5} \begin{pmatrix} \frac{\Gamma_{Mp}}{\Gamma_{M5}} \end{pmatrix}, \tag{14}$$

$$p = M5 - N3, M5 - N7, M5 - N6, M5 - O3$$

The available M subshell data (fij, Sij, wi  $\Gamma_{Mp}$  etc) are highly variable and generally unreliable to better than ±50% or more in some cases. So it is difficult to select a consistent set which we could recommend across an atomic number range from Z=60 to 96. For this reason we have allowed several different data sets to be selected for the M line X-ray intensity ratio calculations.

The M-subshell fluorescence yield ( $\omega_{Mi}$ , *i*=1, 2, 3, 4, 5) can be optionally selected from the theoretical Dirac-Hartree-Slater (DHS) model or Dirac-Flock (DF) model (Chauhan and Puri, 2008) or the experimental values of Durak et al (2001). The  $f_{Mi,j}$  are the M-shell Coster-Kronig probabilities and these can optionally be selected from Bambynek et al (1972) or Chauhan and Puri (2008).  $\Gamma_{Mp}$  is the M-subshell emission rate for line p and  $\Gamma_{Mi}$ , *i* = 1, 2, 3, 4, 5 is the total emission rate for the M-subshell *i*. M-subshell emission rates can be selected from DF or DHS calculations (Puri 2007).

The program also calculates the M-subshell effective fluorescence yield as follows:

$$\begin{aligned} v_{M1} &= \omega_{M1} + f_{M1,2}\omega_{L2} + (f_{M1,3} + f_{M1,2}f_{M2,3})\omega_{M3} + \\ (f_{M1,4} + f_{M1,3}f_{M3,4} + f_{M1,2}f_{M2,4} + f_{M1,2}f_{M2,3}f_{M3,4})\omega_{M4} + \end{aligned}$$
(15)  
$$\begin{pmatrix} f_{M1,5} + f_{M1,4}f_{M4,5} + f_{M1,2}f_{M2,3}f_{M3,5} + f_{M1,2}f_{M2,5} + f_{M1,3}f_{M3,4}f_{M4,5} + \\ f_{M1,2}f_{M2,4}f_{M4,5} + f_{M1,2}f_{M2,3}f_{M3,5} + f_{M1,3}f_{M3,4}f_{M4,5} \end{pmatrix} \omega_{M5} \end{aligned}$$
(16)  
$$v_{M2} &= \omega_{M2} + f_{M2,3}\omega_{M3} + (f_{m2,4} + f_{M2,3}f_{M3,4})\omega_{M4} + \\ (f_{m2,5} + f_{M2,4}f_{M4,5} + f_{M2,3}f_{M3,5} + f_{M2,3}f_{M3,4}f_{M4,5})\omega_{L5} \end{aligned}$$
(17)  
$$v_{L3} &= \omega_{M3} + f_{L3,4}\omega_{L4} + (f_{M3,5} + f_{M3,4}f_{M4,5})\omega_{L5} \end{aligned}$$
(18)  
$$v_{M5} &= \omega_{M5} \end{aligned}$$
(19)  
$$\omega_{M} &= \sum_{i=1}^{5} v_{Mi}\sigma_{Mi}^{I} \\ \sum_{i=1}^{5} \sigma_{Mi}^{I} \end{aligned}$$
(20)

### 3 Using program KLMabgRatios

The data files required by the program KLMabgRatios are specified and reproduced in Appendix 1 to 4. When running the program, where more than one table exists for the same data, the user is asked to select from the available options. The user is additionally requested to enter if a proton, deuteron or a helium ions are to be used and their energies in MeV and also the start and end atomic numbers Z of elements for which the X-ray intensities will be calculated. Once all the options have

been entered, the program selects the appropriate data files and calculates the production cross sections for each of the K, L and M subshells. For each line within each subshell the relative intensities are then calculated, relative to the main  $(\alpha_1 + \alpha_2) = 100$  line. The intensities are then printed to the screen as well as to a file called "*results.txt*". In addition the ionisation cross sections, the X-ray production cross sections and the efficiency fluorescence yields are generated in "wbar.cs" file and the cross sections for each line are presented in file "xsectionresults.csv".

### 3.1 Files for PIXAN

Two files are also generated for input to PIXAN thin and thick target yield programs THIN and THIK, namely:

- dset2-info-ddmmyy for each element this file contains the table of energies and their relative intensities, normalised to  $(\alpha_1+\alpha_2) = 1.00$  in the same format as the original dset2 PIXAN file.
- dset4-info-ddmmyy contains the same information in the same format as dset4 used by PIXAN (described in Appendix 4). The old input file dset4 is read following which the new file is generated containing the same information aside from two entries; ALFAK is replaced by the newly calculated ratio of the intensity of the reference line to the sum of all lines for each of the K and L shells, and WK is replaced by the selected fluorescence yield for the K-shell (i.e. one of Bambynek et al. 1972, Krause 1979, Walters and Bhalla 1971, Chen and Craseman 1980). For the L-shell the total fluorescence yield  $(\varpi L)$  is replaced by one of Puri et al. 1993, Clayton 1986, or Bambynek et al. 1972). On start-up of the program the user is asked to select which table to be used for  $\varpi L$ .

The string "*ddmmyy*" is the day, month and year on which the file was generated and "*info*" contains information on the data tables used. "*info*" has the following content "*KwxxExx*-*LwxxExxwTxx-MwxxExxCKxx*", where:

- *KwxxExx* is the information for the K shell, with the *xx* in "*wxx*" being the two characters to represent the choice of the K shell fluorescence yield table:
  - "*Ba*" for Bambynek et al. (1972), Experimental values
  - "*Kr*" for Krause (1979) Experimental values
  - "WB" for Walters and Bhalla (1971), and
  - "*Ch*" for Chen and Craseman (1980), theory values.

The xx in "*Exx*" are the two characters to represent the choice of the K shell emission rate:

- "*Sc*" for Scofield (1974a), DF theory and
- "*Sa*" for Salem (1974) Experimental values.
- *LwxxExxwTxx* is the information for the L shell, with *xx* in "*wxx*" being the two characters to represent the choice of the L shell fluorescence yield table and Coster-Kronig probabilities:
  - "*Ca*" for Campbell (2003), Experimental and DF theory and
  - "*Kr*" for Krause (1979) Experimental values.

The xx in "*Exx*" are the two characters to represent the choice of the L shell emission rate:

- "*Sc*" for Scofield (1974b), DF theory and
- "*Sa*" for Salem (1974) Experimental values.

The xx in "**wTxx**" are the two characters to represent the choice of the L shell total fluorescence yield:

- "Pu" for Puri et al. 1993 based on RDHS theory from Chen et al., 1981,
- "*EJ*" for PIXAN Clayton et al., (1986), and
- "*Ba*" for Bambynek et al. (1972) Experimental values.

• *MwxxExxCKxx* is the information for the M shell, with *xx* in "*wxx*" being the two characters to represent the choice of the M shell fluorescence yield table:

- "DH" for DHS theory (Chauhan and Puri, 2008), and
- "*DF*" for DF theory (Chauhan and Puri, 2008).

The xx in "*Exx*" are the two characters to represent the choice of the M shell emission rate:

- "*DH*" for DHS theory (Puri, 2007), and
- "*DF*" for DF theory (Puri, 2007).

The xx in "*CKxx*" are the two characters to represent the choice of the M shell Coster-Kronig probabilities:

- "**Ba**" for the super Coster\_Kronign probabilities (Bambynek et al., 1972), experimental values and
- "*Ch*" for Chauhan and Puri (2008) DF and DHS theory values.

### 3.2 L and M shell Spectra

Theoretical L and M shell spectra, for a user selected atomic number Z, can also be optionally produced in the files *Lshell\_Spectrum.csv* and *Mshell\_Spectrum.csv* and the efficiency corrected total spectra for each sub-shell is produced in files *Lsubshell.csv* and *Msubshell.csv*.

For each characteristic energy a Gaussian peak is calculated where the full width half maximum FWHM in keV is calculated as:  $\sqrt{(a+b^*E_x)}$  giving a standard deviation of FWHM/2.35482. Note  $2\sqrt{(2\ln 2)}=2.35482$  and  $E_x$  is the X-ray energy in keV. Currently the value of *a* is 0.016037 and *b* is 0.00287895 for our Vortex X-ray detector and  $E_x$  in keV. The height of the peak is given by the relative line intensity.

### 4 Program *wexplore* - fitting Gaussians

The program *wexplore* reads two files and is normally run by redirecting standard output to a further file. For example, the command would read:

#### wexplore spectrum.txt control.txt > output.txt

The first two lines of the *spectrum.txt* file are header lines, which are read by the program and ignored. The spectra are typically in the GUPIX standard export format. Each subsequent line contains variables labelled, respectively:

Channel, Energy, Data, Fit, Residual, Data-Fit

Channel is an integer, the others are fixed point, which are read and processed as double precision reals. Each of the variables except the last on each line is followed by a comma, so that the fields are comma delineated. The input file can be read and displayed easily by EXCEL.

The program is exploratory and has a number of options specified in the *control.txt* file. As currently run, the program uses the Energy, Data, and Fit variables, which we will label  $e_k$ ,  $d_k$ , and  $f_k$ 

respectively. The program reads and stores the data for all the channels, and uses in the fitting procedure only those channels which have been selected in the *control.txt* file.

The basic problem solved by the program is to fit a number m of Gaussians + a background term to the spectrum variables  $d_j$ . The centreline energy  $E_i$  of each peak is an input in the *control.txt* file. Each Gaussian peak takes the form,

$$p_i(e) = \beta_i \exp\left(-\frac{(e - E_i)^2}{2\sigma_i^2}\right)$$
(21)

where the width (standard deviation),  $\sigma_i$ , is determined from the relation

$$\sigma_i = \frac{\sqrt{(v_1 + v_2 E_i)}}{2.35482} \tag{22}$$

and the parameters  $v_1$  and  $v_2$  are read from *control.txt*.

The fit is achieved by minimising the weighted sum of squares

$$R(\beta) = \sum_{k=1}^{n} w_k \left( \sum_{i=1}^{m} \beta_i p_i(e_k) + \beta_{n+1} f_k - d_k \right)^2$$
(23)

with respect to the coefficients  $\beta$ .

Determination of the background variables  $f_k$  are discussed later below.

The weights are given by

$$w_j = \frac{1}{d_j} \tag{24}$$

which assumes that the uncertainty in each  $d_j$  is proportional to  $\sqrt{d_j}$ .

The minimisation problem is a linear least squares problem, which can be solved by a variety of methods. We have chosen to use Cholesky decomposition to solve the symmetric matrix equation,

$$A\beta = c \tag{25}$$

Where

$$a_{i,j} = \sum_{k=1}^{m} w_k p_i(e_k) p_j(e_k) \qquad i, j = 1 \dots n$$
(26)

$$a_{i,n+1} = \sum_{k=1}^{m} w_k p_i(e_k) f_k \qquad i = 1 \dots n$$
(27)

and,

$$c_{i} = \sum_{k=1}^{m} w_{k} p_{i}(e_{k}) d_{k} \qquad \qquad i = 1 \dots n$$
(28)

Having computed the peak height coefficients  $\beta$ , the program computes the fitted values,

$$g_{k} = \sum_{i=1}^{m} \beta_{i} p_{i}(e_{k}) + \beta_{n+1} f_{k} \qquad k = 1 \dots m$$
(29)

and outputs them, along with the input data values, in comma delineated format suitable for display by EXCEL, and then computes the unweighted sum of squares,

$$S = \sum_{k=1}^{n} \left( \sum_{i=1}^{m} \beta_{i} p_{i}(e_{k}) + \beta_{n+1} f_{k} - d_{k} \right)^{2} = \sum_{k=1}^{m} (g_{k} - d_{k})^{2}$$
(30)

Finally, as an additional check, the program computes the areas associated with each peak by two methods, firstly using,

$$b_i = \beta_i \sum_{k=1}^m c_k p_i(e_k) \tag{31}$$

and secondly by integrating the Gaussians analytically,

$$b_{i} = \beta_{i} \left( erf\left(\frac{E_{i} - e_{1}}{\sigma_{i}}\right) + erf\left(\frac{e_{m} - E_{i}}{\sigma_{i}}\right) \right)$$
(32)

and prints both.

The approximation for erf(x) is taken from Hastings (1955) Pg187 Sheet 63.

The background for the Gaussian fits was determined by performing a linear fit to the log of efficiency corrected spectrum. The first 5 channels to the right of the low energy marker and the last five channels to the left of the high energy marker were used to determine this background fit. The background was then corrected for detector efficiency again and the calculated Gaussians added to this.

Figure 1 below shows the results of such a background calculations for 2 MeV protons on a thin gold Micromatter foil.



Fig. 1: Determination of background for M shell lines from 2 MeV protons on gold.

The solid background line shows how a straight line fit on a log plot differs from the detector efficiency corrected background used here (the dashed background line). This approach gives significantly smaller peak areas for the minor M subshell line intensities than the straight linear background approach. But we feel this is more realistic as it better approximates the secondary electron bremsstrahlung background in this low energy X-ray region.

### 5 KLMabgRatios Examples

#### 5.1 Sample Run

Here we present a sample run of the program *KLMabgRatios*. A screen dump of the options and the resulting selection (in bold) follows. The resulting line intensities are presented in Appendix 5. This sample run is for our preferred option of K, L and M subshell X-ray line intensities for 3 MeV protons on selected targets between Z=6 and 100.

```
Select from
    1: Proton
    2: Deuterium
    3: Helium
Your Selection: 1
Enter proton energy start, then the energy increment and
how many times to increment (e.g. 4 0.5 3): 3.0 0 0
Enter z-start and z-end (e.g. 50 70): 1 100
```

```
K shell options
 Select option for wK
      1: Bambynek
      2: Krause
      3: WB
      4: Chen
Select wK option: 2
 Select option for K shell emission rates
      1: Scofield
      2: Salem
Select emission rate option: 2
 L shell options
 Select option for wL
      1: Campbell
      2: Krause
Select wL option: 1
 Select option for L shell emissions rates
      1: Scofield
      2: Salem
Select emission rate option: 1
 Select option for wL bar
      1: Puri
      2: EJC
      3: Bambynek
Select wL bar option: 3
 M shell options
 Select option for M shell emission rates
      1: DHS
      2: DF
Select emission rate option: 2
 Select option for M shell fluorescence yield
      1: DHS
      2: DF
Select fluorescence yield option: 2
 Select option for M shell wbar
      1: DHS
      2: DF
      3: Exp
Select wM_bar option: 3
 Select option for M shell C-K transitions
      1: Bambynek
      2: Chauhan and Puri
Select C-K transitions option: 1
 Write to dset2 energies as
      1: supplied by GEOPIXE
      2: Calculated from above
         Select dset2 option: 2
Do you want to produce an L-shell spectrum: y
Which Z: 79
```

Do you want to produce an M-shell spectrum: y Which Z: 79

#### 5.2 Uranium

Line

 $L\alpha 1$ 

 $L\alpha 2$ 

LI

Lη

Lβ6

Lβ4

Lβ5

Lβ1

Lβ3

Lγ5

Lγ1

Lγ2

Lγ3

Lγ6

Lγ44

Lβ215

Energy

13.612

13.437

11.616 15.397

15.723

16.425

16.573

17.067

17.217

17.452

19.504

20.164

20.481

20.709

20.839

21.559

keV

Ratio

Here we present the output of the *KLMabgRatios* program for uranium. The theoretical L-shell energies and their intensities are presented in Table 3 and the corresponding spectrum is shown in Figure 2. Information (such as the shell total ionisation cross section, and the total fluorescence yield) on the L-shell and M-shell is presented in Table 4. The theoretical M-shell energies and their intensities are presented in Table 5 and the corresponding spectrum is shown in Figure 3.



Table 3: Uranium Line energies and intensities for 3 MeV protons - ECPSSR

### **Table 3: Uranium Line** energies and intensities for 3 **MeV protons – ECPSSR**



Table 4: Information for 3 MeV protons for the L and M shells.

| Lα/Ltot= | 0.60143 |              |
|----------|---------|--------------|
| ωLbar=   | 0.54117 |              |
| LαEff=   | 0.73672 |              |
| σLtot=   | 49.6427 | barns ECPSSR |
| Mα/Mtot= | 0.57862 |              |
| ωMbar=   | 0.05221 |              |
| σMtot=   | 24.8575 | kbarns CPWBA |

| Line   | Energy | Detector   | Ratio   |
|--------|--------|------------|---------|
|        | keV    | Efficiency | Μα=1.00 |
| M5-N7  | 3.1746 | 0.7539     | 0.95147 |
| M5-N6  | 3.1638 | 0.7518     | 0.04853 |
| M4-N2  | 2.4570 | 0.5506     | 0.02293 |
| M5-N3  | 2.5090 | 0.5705     | 0.03121 |
| M4-N3  | 2.6850 | 0.6309     | 0.00210 |
| M3-N1  | 2.8640 | 0.6829     | 0.01940 |
| M3-N2  | 3.0320 | 0.7240     | 0.00007 |
| M4-N6  | 3.3398 | 0.7838     | 0.51192 |
| M5-O3  | 3.3600 | 0.7871     | 0.00637 |
| M4-O2  | 3.4710 | 0.8043     | 0.00471 |
| M3-N4  | 3.5247 | 0.8121     | 0.00909 |
| M4-O3  | 3.5360 | 0.8136     | 0.00041 |
| M3-N5  | 3.5668 | 0.8178     | 0.06831 |
| M2-N1  | 3.7430 | 0.8397     | 0.00265 |
| M3-N67 | 3.9202 | 0.8584     | 0.00115 |
| M3-O1  | 3.9820 | 0.8642     | 0.00456 |
| M3-O45 | 4.2045 | 0.8829     | 0.01581 |
| M1-N23 | 4.3910 | 0.8960     | 0.00886 |
| M2-N4  | 4.4037 | 0.8968     | 0.01280 |
| M2-O1  | 4.8610 | 0.9215     | 0.00065 |
| M2-O4  | 5.0792 | 0.9305     | 0.00290 |
| M1-O23 | 5.3235 | 0.9391     | 0.00236 |

Table 5: Uranium M line energies and intensities for 3 MeV protons - CPWBA.



Fig. 3: Theoretical M shell spectrum for 3 MeV protons on uranium.

Figure 4 shows the experimental M shell spectrum for 2 MeV protons on Uranium. The 13 Gaussians and the background were fitted with the *wexplore* program described above. The Prefit

spectrum was obtained beforehand by fitting the full spectrum in GUPIX (Campbell et al 2010) without M lines and then exporting the resultant data-fitted spectrum through to *wexplore* for the Gaussian fitting.



Fig. 4: Experimental M shell spectrum for 2 MeV protons on uranium.

The extra non-M subshell peaks in the Prefit spectrum are contamination peaks from Ca K $\alpha$  and K $\beta$  lines and are also fitted in the Prefit spectrum by *wexplore* as an independent Gaussian line.

### 6 Summary

In the 1980's we developed the PIXAN analysis package basically for K and L analysis of X-ray spectra and to determine elemental concentrations using mainly K $\alpha$  X-ray lines parameters. Our preferred dataset parameters used then were ECPSSR K and L subshell ionisation cross section, experimental fluorescence yields and Coster-Kronig transitions from Krause 1979 and individual experimental X-ray line emission rates published by Salem et al in 1974.

The program described here, *KLMabgRatios*, has been written to calculate these K, L and M subshell using the latest X-ray parameter datsets as well as the older original datasets from the 1970s and 1980s. Our preferred recommended K, L and M X-ray line intensities for 3 MeV proton impact on selected targets for atomic numbers between Z=6 and 100 are given in Tables 30 to 33 inclusive for 8 K lines, 17 L lines and 22 M lines as well as their corresponding  $\omega_{K}$ ,  $\omega_{L}$  and  $\omega_{M}$  total shell fluorescence yields. Note that although the line intensities are given for 3 MeV protons the program will calculate these line intensity ratios for any input ion energy as it has direct assess to the ECPSSR ionisation cross sections for K and L subshells and CPWBA ionisation cross sections for M subshells for protons, helium ions and deuterons.

### 7 References

Bambynek W., Crasemann B., Fink R.W., Freund H.U., Mark H., Swift C.D., Price R.E., Venugopala Rao P., 1972. X-Ray Fluorescence Yields, Auger, and Coster-Kronig Transition Probabilities. Review of Modern Physics, 44, 716-813.

Brandt W., Lapicki G., 1979, L-shell Coulomb ionization by heavy charded particles. Phys. Rev A20, 465.

Campbell J.L. 2003. Fluorescence yields and Coster-Kronig probabilities for the atomic L subshells. Atomic Data and Nuclear Data Tables, 85, 291-315.

Campbell J.L. 2009. Fluorescence yields and Coster-Kronig probabilities for the atomic L subshells. Part II: The L1 subshell revisited. Atomic Data and Nuclear Data Tables, 95, 115-124.

Campbell J.L., Boyd N.I., Grassi N., Bonnick P., Maxwell J.A., 2010. The Guelph PIXE software package IV. Nucl. Instr. and Methods in Physics Research B268 3356-3363.

Chauhan Y., Puri S. 2008.  $M_i$  (*i*=1-5) subshell fluorescence and Coster-Kronig yields for elements with 67  $\leq$ Z $\leq$ 92. Atomic Data nd Nuclear Data Tables, 94, 38-49.

Chen M.H., Craseman B., 1980. Relativistic K-shell Auger rates, level widths and fluorescence yields. Phys Rev A21(1980) 436-441.

Chen M.H., Craseman B., 1980., 1981 Phys. Rev. A24 (1981)177.

Clayton E., 1986. PIXAN The Lucas Heights PIXE analysis computer package. AAEC/M113, November 1986.

Clayton E., Cohen D.D., Duerden P. 1981. Thick target PIXE analysis and yield curve calculations. Nuclear Instruments and Methods 180, 541-548.

Cohen D.D., Harrigan M. 1985. K- and L-shell ionization cross sections for protons and helium ions calculated in the ecpssr theory. Atomic Data and Nuclear Data Tables 33, 255.

Cohen D.D., Harrigan M., 1986. Calculated L-Shell X-ray line intensities for proton and helium ion impact. Atomic Data and Nuclear Data Tables. 34, 393-414.

Durak R, Ozdemis Y Spectrochimi Acta, PartB: Atomic Spectrometry, 2001; 56, 455.

Hastings, C. Jr. (1955) Approximations for Digital Computers Princeton University Press

Johnson D.E., Basbas G., McDaniel F.D. 1979. Nonrelativistic Plane-Wave Born – approximation calculations of direct Coulomb M-subshell ionization by charged particles. Atomic Data and Nuclear Data Tables, 24, 1-11.

Krause M.O. 1979. Atomic Radiative and Radiationless Yields for K and L shells. J. Phys. Chem. Ref. Data, 8 (2), 307-327.

Puri S., Mehta D., Chad B., Singh N., Trehan P.N., 1993. L Shell fluorescence Yields and Coster-Kronig Transition Probabilities for the Elements with  $25 \le Z \le 96$ . X-Ray Spectrometry, 22, 358-361.

Puri S., 2007. Relative intensities for  $L_i$  (i = 1-3) and  $M_i$  (i = 1-5) subshell X-rays. Atomic Data and Nuclear Data Tables, 93, 730-741.

Ryan C.G., Cousens D.R., Sie S.H., Griffin W.L., Suter G.F., Clayton E. 1990. Quantitative PIXE Microanalysis of Geological Material using the CSIRO Proton Microprobe. Nuclear Instruments and Methods in Physics Research B47, 55-71.

Salem S.I., Panossian S.L., Krause R.A., 1974. Experimantal K and L Relative X-ray Emission rates. Aomic Data and Nuclear Data Tables, 14, 91-109.

Scofield J.H. 1974a Relativistic Hartree-Slater values for K and L X-ray emission rates. Atomic Data and Nuclear Data Tables 14(2) 121-137.

Scofield J.H. 1974b Hartree-Fock values of L X-ray emission rates. Physical Review A, 10, 1507-1510.

Walters D.L., Bhalla C.P. 1971. Nonrelativistic Auger Rates, X-Ray Rates, and Fluorescence Yields for the K Shell. PhysRev A3 (1971) 1919.

Weast R.C (ed) 1970: Handbook of Chemistry and Physics, 50<sup>th</sup> Edition, 1969-1970.

### 8 Appendix 1: Files for K shell calculations

For the K-shell relative intensity calculations the data tables, stored in the following files, are needed:

- *upxk.input* atomic mass and edges for ionisation cross section calculations.
- *KshellEmissionRatesScofield-Salem13Feb11.txt* K-shell emission rates for the two options (Scofield 1974a, Salem 1974).
- **wK-Bambynek-Krause-WB-Chen13Feb11.txt** K-shell fluorescence yield for the four options (Bambynek et al. 1972, Krause 1979, Walters and Bhalla 1971, Chen and Craseman 1980).
- **kshellenergiesa1-3b1-5at13Feb11.txt** K-shell characteristic X-ray energies.

### 8.1 K shell atomic mass and edges

The K shell edges are stored in file "*upxk.input*". The information in this file is used for the K shell ionisation cross sections calculations.

### Table 6: Inputs for K shell ECPSSR cross sections.

```
*
   ROOTS
0.095012509837637440185D0
0.281603550779258913230D0
0.458016777657227386342D0
0.617876244402643748447D0
0.755404408355003033895D0
0.865631202387831743880D0
0.944575023073232576078D0
0.989400934991649932596D0
   WEIGHTS
0.189450610455068496285D0
0.182603415044923588867D0
0.169156519395002538189D0
0.149595988816576732081D0
0.124628971255533872052D0
0.095158511682492784810D0
0.062253523938647892863D0
0.027152459411754094852D0
  SEND=1.0D-2 RNOW=10.0D0
                             RN00=10.0D0
 1.0d-3
            20.0d0
                     20.0d0
 Proton Energy 3.0 -1
 6.0(0.25)10.0 10.5(0.5)20.0 -1
* 0.1(0.02)0.5 1.0(0.5)6.0
                              -1
  ENERGY HVY 0.5(0.1)2 2.2(.2)4.8 5(0.5)15 16(1)50
                                                      -1
 ENEGRY P 0.5(.1)10
                        -1
* D 0.2(0.05)1.0 1.2(0.2)10.0 10.5(0.5)20.0
                                                -1
 ENERGY HE 0.2(0.1)2 2.2(.2)4.2 4.5(0.5)15
                                                -1
 LI 0.5 0.6(.2)4 4.5(.5)10 11(1)50 52(2)70 75(5)100
                                                       -1
* ENERGY BE 0.5 0.6(0.2)4 4.5(0.5)10 11(1)50 52(2)90
                                                       -1
 ENERGIES FOR PLOT 20 50 PLOTMIN=1.0D-3 PLOTMAX=1.0D10
 ADIAB=0 ZERO=CORRECT NOT IN ONE=IN
 CPSSR=1 ZERO=CPSSR, ONE=ECPSSR, TWO=COHENECPSSR
TEST POINTS FOR ADIABATIC FN 0.1(0.1)1 1.5 2(1)10
```

| * | INSERT    | ION | ZS      |
|---|-----------|-----|---------|
|   | PROTON    | 1   | 1.00783 |
| * | DEUTERIUM | 1   | 2.01410 |

| * | HELIUM | 2  | 4.00260  |
|---|--------|----|----------|
| * | LI     | 3  | 7.01601  |
| * | BE     | 4  | 9.01219  |
| * | В      | 5  | 11.00930 |
| * | С      | 6  | 12.00000 |
| * | N      | 7  | 14.00310 |
| * | 0      | 8  | 15.99490 |
| * | F      | 9  | 18.99840 |
| * | NE     | 10 | 19.99240 |
| * | SI     | 14 | 27.97690 |
| * | S      | 16 | 31.97210 |

\*

| INSERT | TARGET | ZS      | Kedge  |
|--------|--------|---------|--------|
| С      | 6      | 12.000  | 0.283  |
| N      | 7      | 14.000  | 0.399  |
| 0      | 8      | 16.000  | 0.531  |
| F      | 9      | 19.000  | 0.687  |
| NE     | 10     | 20.179  | 0.867  |
| NA     | 11     | 22.989  | 1.072  |
| MG     | 12     | 24.300  | 1.305  |
| AL     | 13     | 26.980  | 1.559  |
| SI     | 14     | 28.090  | 1.838  |
| P      | 15     | 30.970  | 2.142  |
| S      | 16     | 32.060  | 2.472  |
| CL     | 17     | 35.453  | 2.822  |
| AR     | 18     | 39.948  | 3.202  |
| K      | 19     | 39.098  | 3.607  |
| CA     | 20     | 40.080  | 4.038  |
| SC     | 21     | 44.960  | 4.496  |
| TI     | 22     | 47.900  | 4.965  |
| V      | 23     | 50.940  | 5.465  |
| CR     | 24     | 51.996  | 5.989  |
| MN     | 25     | 54.938  | 6.540  |
| FE     | 26     | 55.847  | 7.112  |
| CO     | 27     | 58.930  | 7.709  |
| NI     | 28     | 58.700  | 8.333  |
| CU     | 29     | 63.546  | 8.979  |
| ZN     | 30     | 65.380  | 9.659  |
| GA     | 31     | 69.720  | 10.368 |
| GE     | 32     | 72.590  | 11.104 |
| AS     | 33     | 74.920  | 11.868 |
| SE     | 34     | 78.960  | 12.658 |
| BR     | 35     | 79.900  | 13.474 |
| KR     | 36     | 83.800  | 14.322 |
| RB     | 37     | 85.470  | 15.201 |
| SR     | 38     | 87.620  | 16.105 |
| Y      | 39     | 89.910  | 17.037 |
| ZR     | 40     | 91.220  | 17.998 |
| NB     | 41     | 92.910  | 18.986 |
| MO     | 42     | 95.940  | 20.002 |
| TC     | 43     | 97.000  | 21.054 |
| RU     | 44     | 101.070 | 22.118 |
| RH     | 45     | 102.910 | 23.224 |

| PD       | 46  | 106.400 | 24.350  |
|----------|-----|---------|---------|
| AG       | 47  | 107.868 | 25.514  |
| CD       | 48  | 112.400 | 26.711  |
| IN       | 49  | 114.820 | 27.940  |
| SN       | 50  | 118.690 | 29.200  |
| SB       | 51  | 121.750 | 30.491  |
| UE<br>TE | 52  | 127 600 | 31 813  |
| т        | 53  | 126 905 | 33 169  |
| T<br>VE  | 55  | 120.905 | 24 592  |
|          | 54  | 122 005 | 34.302  |
|          | 55  | 132.905 | 35.959  |
| BA       | 56  | 137.340 | 37.441  |
|          | 57  | 138.905 | 38.925  |
| CE       | 58  | 140.120 | 40.449  |
| PR       | 59  | 141.000 | 41.998  |
| ND       | 60  | 144.240 | 43.571  |
| PM       | 61  | 147.000 | 45.184  |
| SM       | 62  | 150.350 | 46.834  |
| EU       | 63  | 151.960 | 48.519  |
| GD       | 64  | 157.250 | 50.240  |
| Tb       | 65  | 158.942 | 51.996  |
| DY       | 66  | 162.500 | 53.789  |
| HO       | 67  | 164.930 | 55.615  |
| ER       | 68  | 167.260 | 57.483  |
| ТМ       | 69  | 168.934 | 59.930  |
| YB       | 70  | 173.040 | 61.332  |
| LU       | 71  | 174.970 | 63.304  |
| HF       | 72  | 178.910 | 65.351  |
| ТА       | 73  | 180.950 | 67.414  |
| <br>W    | 74  | 183 850 | 69 524  |
| RE       | 75  | 186 200 | 71 676  |
|          | 76  | 190 200 | 73 871  |
| тр       | 70  | 192 200 | 76 111  |
|          | 78  | 195 090 | 78 395  |
|          | 79  | 196 970 | 80 723  |
| HG       | 80  | 200 590 | 83 102  |
| TT.      | 81  | 204 370 | 85 530  |
| PR       | 82  | 207 200 | 88 006  |
| BT       | 83  | 208.980 | 90.527  |
| PO       | 84  | 210.000 | 93.105  |
| AT       | 85  | 210.000 | 95.730  |
| RN       | 86  | 222.000 | 98.404  |
| FR       | 87  | 223.000 | 101.137 |
| RA       | 88  | 226.000 | 103.922 |
| AC       | 89  | 227.000 | 106.755 |
| TH       | 90  | 232.000 | 109.649 |
| PA       | 91  | 231.000 | 112.601 |
| U        | 92  | 238.000 | 115.603 |
| NP       | 93  | 237.000 | 118.678 |
| PU       | 94  | 242.000 | 121.818 |
| AM       | 95  | 243.000 | 124.876 |
| CM       | 96  | 247.000 | 128.220 |
| BK       | 97  | 247.000 | 131.590 |
| CF       | 98  | 251.000 | 135.960 |
| ES       | 99  | 254.000 | 139.490 |
|          | 100 | 253.000 | 143.090 |

### 8.2 K shell emission rates

The K-shell emission rates for the two options (Scofield 1974a, Salem 1974) are stored in the file

### KshellEmissionRatesScofield-Salem13Feb11.txt.

### 8.3 K shell fluorescence yield

The K shell fluorescence yields for the four options (Bambynek et al., 1972, Krause 1979, Walters and Bhalla 1971, Chen and Craseman 1980) are stored in file

#### wK-Bambynek-Krause-WB-Chen13Feb11.txt:

### Table 7: K shell fluorescence yield.

| *Bambynek et al wKs from Rev Mod Phys 44(1972)716-814 |           |          |         |         |        |  |  |  |
|-------------------------------------------------------|-----------|----------|---------|---------|--------|--|--|--|
| *Walters and Bhalla PhysRevA3(1971)1919               |           |          |         |         |        |  |  |  |
| *Chen and Craseman Phys Rev A21(1980)436-441 DHS      |           |          |         |         |        |  |  |  |
| *fit to (wk/(1-wK))^0.25 =oddPoly(Z^3)                |           |          |         |         |        |  |  |  |
| *Coeffs                                               |           |          |         |         |        |  |  |  |
| *a0=                                                  | 1.51E-02  |          |         |         |        |  |  |  |
| *a1                                                   | 3.27E-02  |          |         |         |        |  |  |  |
| *a3                                                   | -6.40E-07 |          |         |         |        |  |  |  |
| *Elt                                                  | Z         | Bambynek | Krause  | WB      | Chen   |  |  |  |
| С                                                     | 6         | 0.00198  | 0.00280 | 0.00240 | -9     |  |  |  |
| Ν                                                     | 7         | 0.00352  | 0.00520 | 0.00470 | -9     |  |  |  |
| 0                                                     | 8         | 0.00580  | 0.00830 | 0.00770 | -9     |  |  |  |
| F                                                     | 9         | 0.00903  | 0.01300 | 0.01150 | -9     |  |  |  |
| NE                                                    | 10        | 0.01341  | 0.01800 | 0.01640 | -9     |  |  |  |
| NA                                                    | 11        | 0.01918  | 0.02300 | 0.02240 | -9     |  |  |  |
| MG                                                    | 12        | 0.02655  | 0.03000 | 0.03010 | -9     |  |  |  |
| AL                                                    | 13        | 0.03575  | 0.03900 | 0.03980 | -9     |  |  |  |
| SI                                                    | 14        | 0.04696  | 0.05000 | 0.05140 | -9     |  |  |  |
| Р                                                     | 15        | 0.06036  | 0.06300 | 0.06530 | -9     |  |  |  |
| S                                                     | 16        | 0.07608  | 0.07800 | 0.08180 | -9     |  |  |  |
| CL                                                    | 17        | 0.09419  | 0.09700 | 0.10040 | -9     |  |  |  |
| AR                                                    | 18        | 0.11471  | 0.11800 | 0.12150 | 0.1220 |  |  |  |
| К                                                     | 19        | 0.13760  | 0.14000 | 0.14480 | 0.1460 |  |  |  |
| CA                                                    | 20        | 0.16274  | 0.16300 | 0.17080 | 0.1700 |  |  |  |
| SC                                                    | 21        | 0.18995  | 0.18800 | 0.19910 | 0.2006 |  |  |  |
| TI                                                    | 22        | 0.21899  | 0.21400 | 0.22730 | 0.2312 |  |  |  |
| V                                                     | 23        | 0.24958  | 0.24300 | 0.26080 | 0.2618 |  |  |  |
| CR                                                    | 24        | 0.28139  | 0.27500 | 0.29390 | 0.2924 |  |  |  |
| MN                                                    | 25        | 0.31407  | 0.30800 | 0.32760 | 0.3230 |  |  |  |
| FE                                                    | 26        | 0.34727  | 0.34000 | 0.36240 | 0.3560 |  |  |  |
| CO                                                    | 27        | 0.38064  | 0.37300 | 0.39770 | 0.3890 |  |  |  |
| NI                                                    | 28        | 0.41384  | 0.40600 | 0.43290 | 0.4220 |  |  |  |
| CU                                                    | 29        | 0.44658  | 0.44000 | 0.46780 | 0.4550 |  |  |  |
| ZN                                                    | 30        | 0.47861  | 0.47400 | 0.50140 | 0.4880 |  |  |  |
| GA                                                    | 31        | 0.50969  | 0.50700 | 0.53380 | 0.5158 |  |  |  |
| GE                                                    | 32        | 0.53965  | 0.53500 | 0.56500 | 0.5436 |  |  |  |
| AS                                                    | 33        | 0.56835  | 0.56200 | 0.59470 | 0.5714 |  |  |  |
| SE                                                    | 34        | 0.59570  | 0.58900 | 0.62300 | 0.5992 |  |  |  |

| BR        | 35              | 0.62164 | 0.61800 | 0.64980  | 0.6270 |
|-----------|-----------------|---------|---------|----------|--------|
| KR        | 36              | 0.64613 | 0.64250 | 0.67540  | 0.6510 |
| RB        | 37              | 0.66918 | 0.66700 | 0.69870  | 0.6713 |
| SR        | 38              | 0.69080 | 0.69000 | 0.72110  | 0.6915 |
| Y         | 39              | 0.71102 | 0.71000 | 0.74200  | 0.7118 |
| ZR        | 40              | 0.72990 | 0.73000 | 0.76110  | 0.7320 |
| NB        | 41              | 0.74749 | 0.74700 | 0.77880  | 0.7485 |
| MO        | 42              | 0.76385 | 0.76500 | 0.79510  | 0.7650 |
| TC        | 43              | 0.77905 | 0.77950 | 0.80930  | 0.7793 |
| RU        | 44              | 0.79317 | 0.79400 | 0.82360  | 0.7937 |
| RH        | 45              | 0.80626 | 0.80800 | 0.83670  | 0.8080 |
| PD        | 46              | 0.81840 | 0.82000 | 0.84910  | 0.8190 |
| AG        | 47              | 0.82965 | 0.83100 | 0.86050  | 0.8300 |
| CD        | 48              | 0.84008 | 0.84300 | 0.87070  | 0.8393 |
| IN        | 49              | 0.84974 | 0.85300 | 0.88030  | 0.8487 |
| SN        | 50              | 0.85870 | 0.86200 | 0.88890  | 0.8580 |
| SB        | 51              | 0.86701 | 0.87000 | 0.89710  | 0.8660 |
| TE        | 52              | 0.87471 | 0.87700 | 0.90460  | 0.8740 |
| 1         | 53              | 0.88186 | 0.88400 | 0.91120  | 0.8805 |
| XE        | 54              | 0.88850 | 0.89100 | 0.91760  | 0.8870 |
| CS        | 55              | 0.89466 | 0.89700 | -9       | 0.8880 |
| BA        | 56              | 0.90038 | 0.90200 | -9       | 0.8890 |
| LA        | 57              | 0.90571 | 0.90700 | -9       | 0.8963 |
| CE        | 58              | 0.91066 | 0.91200 | -9       | 0.9035 |
| PR        | 59              | 0.91528 | 0.91700 | -9       | 0.9108 |
| ND        | 60              | 0.91957 | 0.92100 | -9       | 0.9180 |
| PM        | 61              | 0.92358 | 0.92500 | -9       | 0.9217 |
| SM        | 62              | 0.92732 | 0.92900 | -9       | 0.9253 |
| EU        | 63              | 0.93081 | 0.93200 | -9       | 0.9290 |
| GD        | 64              | 0.93407 | 0.93500 | -9       | 0.9318 |
| TB        | 65              | 0.93712 | 0.93800 | -9       | 0.9345 |
| DY        | 66              | 0.93998 | 0.94100 | -9       | 0.9373 |
| HO        | 67              | 0.94265 | 0.94400 | -9       | 0.9400 |
| ER        | 68              | 0.94515 | 0.94700 | -9       | 0.9423 |
|           | 69              | 0.94750 | 0.94900 | -9       | 0.9447 |
| YB        | 70              | 0.94971 | 0.95100 | -9       | 0.9470 |
|           | 71              | 0.95178 | 0.95300 | -9       | 0.9488 |
|           | 72              | 0.95372 | 0.95500 | -9       | 0.9505 |
|           | 73              | 0.95555 | 0.95700 | -9       | 0.9523 |
|           | 74              | 0.95727 | 0.95800 | -9       | 0.9540 |
| RE        | 75              | 0.95009 | 0.95900 | -9       | 0.9555 |
| 05        | 70              | 0.96041 | 0.96100 | -9       | 0.9507 |
|           | 70              | 0.90100 | 0.96200 | -9       | 0.9500 |
|           | 70              | 0.90321 | 0.90300 | -9       | 0.9595 |
| AU<br>LLC | 79              | 0.90449 | 0.90400 | -9       | 0.9007 |
|           | 81              | 0.90370 | 0.90500 | -9       | 0.9020 |
|           | 01              | 0.90004 | 0.96600 | -9       | 0.9027 |
|           | 82              | 0.90792 | 0.90700 | -9       | 0.9033 |
|           | 03<br>Q4        | 0.90094 | 0.90000 | -9       | 0.9040 |
| ΔΤ        | 04<br>QF        | 0.30330 | 0.90000 | -9       | 0.9040 |
|           | 00<br>20        | 0.97001 | 0.90900 | -9       | 0.9000 |
| FR        | <u>00</u><br>27 | 0.37100 | 0.30300 | -9       | 0.004  |
| RA        | 07<br>88        | 0.97200 | 0.97000 | _0<br>_9 | 0.9072 |
|           | 00              | 0.31321 | 0.97000 | -9       | 0.9000 |

| AC | 89  | 0.97401 | 0.97100 | -9 | 0.9685 |
|----|-----|---------|---------|----|--------|
| TH | 90  | 0.97471 | 0.97100 | -9 | 0.9690 |
| PA | 91  | 0.97537 | 0.97200 | -9 | 0.9695 |
| U  | 92  | 0.97599 | 0.97200 | -9 | 0.9700 |
| NP | 93  | 0.97659 | 0.97300 | -9 | 0.9703 |
| PU | 94  | 0.97715 | 0.97300 | -9 | 0.9705 |
| AM | 95  | 0.97769 | 0.97400 | -9 | 0.9708 |
| СМ | 96  | 0.97820 | 0.97400 | -9 | 0.9710 |
| BK | 97  | 0.97868 | 0.97500 | -9 | 0.9713 |
| CP | 98  | 0.97914 | 0.97500 | -9 | 0.9715 |
| ES | 99  | 0.97957 | 0.97500 | -9 | 0.9718 |
| FM | 100 | 0.97998 | 0.97600 | -9 | 0.9720 |
| HD | 101 | 0.98037 | 0.97600 | -9 | -9     |
| NO | 102 | 0.98074 | 0.97600 | -9 | -9     |
| LR | 103 | 0.98109 | 0.97700 | -9 | -9     |

### K shell Energies

The K shell energies, sourced from GEOPIXE (Ryan et al., 1990) and Kaye&Laby (http://www.kayelaby.npl.co.uk/atomic\_and\_nuclear\_physics/4\_2/4\_2\_1.html) are stored in file,

### kshellenergiesa1-3b1-5at13Feb11.txt:

All energies are in keV.

### Table 8: K shell characteristic X-ray energies.

| * 23 No  | ovem   | ber 2010     |             |             |             |             |                     |        |             |        |        |
|----------|--------|--------------|-------------|-------------|-------------|-------------|---------------------|--------|-------------|--------|--------|
| * Energ  | gies c | btained fro  | m GEOPI     | (E and Kaye | e&Laby      |             |                     |        |             |        |        |
| * http:/ | /www   | /.kayelaby.r | npl.co.uk/a | tomic_and   | nuclear_pl  | nysics/4_2  | 2/4_2_1.ht          | ml     |             |        |        |
| *Elt     | Ζ      | Κα1          | Κα2         | Κα3         | <b>Κ</b> β1 | <b>Κ</b> β2 | <b>Κ</b> β <b>3</b> | Κβ4    | <b>Κ</b> β5 | Κα     | Κβ     |
| С        | 6      | 0.2770       | 0.2770      | 0.2790      | 0.2770      | 0.2770      | 0.2770              | 0.2770 | 0.2770      | 0.2770 | 0.2770 |
| Ν        | 7      | 0.3930       | 0.3930      | 0.3950      | 0.3924      | 0.3924      | 0.3924              | 0.3924 | 0.3924      | 0.3924 | 0.3924 |
| 0        | 8      | 0.5250       | 0.5250      | 0.5270      | 0.5249      | 0.5249      | 0.5249              | 0.5249 | 0.5249      | 0.5249 | 0.5249 |
| F        | 9      | 0.6770       | 0.6770      | 0.6790      | 0.6768      | 0.6768      | 0.6768              | 0.6768 | 0.6768      | 0.6768 | 0.6768 |
| Ne       | 10     | 0.8480       | 0.8480      | 0.8500      | 0.8580      | 0.8590      | 0.8580              | 0.8590 | 0.8580      | 0.8486 | 0.8486 |
| Na       | 11     | 1.0410       | 1.0410      | 1.0430      | 1.0710      | 1.0710      | 1.0710              | 1.0710 | 1.0710      | 1.0410 | 1.0710 |
| Mg       | 12     | 1.2530       | 1.2530      | 1.2550      | 1.3020      | 1.3020      | 1.3020              | 1.3020 | 1.3020      | 1.2536 | 1.3020 |
| AI       | 13     | 1.4870       | 1.4860      | 1.4890      | 1.5570      | 1.5570      | 1.5570              | 1.5570 | 1.5570      | 1.4866 | 1.5570 |
| Si       | 14     | 1.7400       | 1.7390      | 1.7420      | 1.8360      | 1.8360      | 1.8360              | 1.8360 | 1.8360      | 1.7398 | 1.8360 |
| Р        | 15     | 2.0140       | 2.0130      | 2.0160      | 2.1390      | 2.1390      | 2.1390              | 2.1390 | 2.1390      | 2.0134 | 2.1390 |
| S        | 16     | 2.3080       | 2.3070      | 2.3100      | 2.4640      | 2.4640      | 2.4640              | 2.4640 | 2.4640      | 2.3074 | 2.4680 |
| CI       | 17     | 2.6220       | 2.6200      | 2.6240      | 2.8160      | 2.8160      | 2.8160              | 2.8160 | 2.8160      | 2.6219 | 2.8150 |
| Ar       | 18     | 2.9580       | 2.9560      | 2.9600      | 3.1900      | 3.1910      | 3.1900              | 3.1910 | 3.1900      | 2.9570 | 3.1900 |
| К        | 19     | 3.3140       | 3.3110      | 3.3160      | 3.5900      | 3.6030      | 3.5900              | 3.6030 | 3.6030      | 3.3129 | 3.5890 |
| Са       | 20     | 3.6920       | 3.6880      | 3.6940      | 4.0120      | 4.0130      | 4.0120              | 4.0130 | 4.0320      | 3.6905 | 4.0125 |
| Sc       | 21     | 4.0900       | 4.0860      | 4.0920      | 4.4600      | 4.4870      | 4.4600              | 4.4870 | 4.4860      | 4.0891 | 4.4735 |
| Ti       | 22     | 4.5110       | 4.5050      | 4.5130      | 4.9310      | 4.9620      | 4.9310              | 4.9620 | 4.9610      | 4.5088 | 4.9465 |
| V        | 23     | 4.9520       | 4.9440      | 4.9540      | 5.4260      | 5.4630      | 5.4260              | 5.4630 | 5.4620      | 4.9497 | 5.4445 |

| Cr | 24 | 5.4150  | 5.4050  | 5.4170  | 5.9460  | 5.9870  | 5.9460  | 5.9870  | 5.9860  | 5.4116  | 5.9665  |
|----|----|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Mn | 25 | 5.8990  | 5.8880  | 5.9010  | 6.4890  | 6.5350  | 6.4890  | 6.5350  | 6.5350  | 5.8951  | 6.5120  |
| Fe | 26 | 6.4040  | 6.3910  | 6.4060  | 7.0570  | 7.1080  | 7.0570  | 7.1080  | 7.1070  | 6.3995  | 7.0825  |
| Со | 27 | 6.9300  | 6.9150  | 6.9320  | 7.6480  | 7.7060  | 7.6480  | 7.7060  | 7.7050  | 6.9253  | 7.6770  |
| Ni | 28 | 7.4770  | 7.4600  | 7.4790  | 8.2630  | 8.3290  | 8.2630  | 8.3290  | 8.3270  | 7.4724  | 8.2960  |
| Cu | 29 | 8.0460  | 8.0260  | 8.0480  | 8.9040  | 8.9030  | 8.9030  | 8.9030  | 8.9760  | 8.0411  | 8.9035  |
| Zn | 30 | 8.6370  | 8.6140  | 8.6390  | 9.5700  | 9.6560  | 9.5670  | 9.6560  | 9.6480  | 8.6312  | 9.6130  |
| Ga | 31 | 9.2500  | 9.2230  | 9.2520  | 10.2630 | 10.3650 | 10.2590 | 10.3650 | 10.3460 | 9.2428  | 10.3140 |
| Ge | 32 | 9.8850  | 9.8540  | 9.8870  | 10.9800 | 11.0990 | 10.9760 | 11.0990 | 11.0730 | 9.8761  | 11.0395 |
| As | 33 | 10.5420 | 10.5060 | 10.5440 | 11.7240 | 11.8620 | 11.7180 | 11.8620 | 11.8190 | 10.5318 | 11.7930 |
| Se | 34 | 11.2200 | 11.1790 | 11.2220 | 12.4940 | 12.6500 | 12.4870 | 12.6500 | 12.5940 | 11.2087 | 12.5720 |
| Br | 35 | 11.9220 | 11.8760 | 11.9240 | 13.2890 | 13.4670 | 13.2820 | 13.4670 | 13.4020 | 11.9087 | 13.3780 |
| Kr | 36 | 12.6480 | 12.5960 | 12.6500 | 14.1100 | 14.3120 | 14.1020 | 14.3280 | 14.2350 | 12.6320 | 14.2110 |
| Rb | 37 | 13.3930 | 13.3330 | 13.3950 | 14.9590 | 15.1830 | 14.9490 | 15.2050 | 15.0820 | 13.3755 | 15.0710 |
| Sr | 38 | 14.1630 | 14.0950 | 14.1650 | 15.8330 | 16.0820 | 15.8220 | 16.1040 | 15.9660 | 14.1426 | 15.9575 |
| Υ  | 39 | 14.9560 | 14.8800 | 14.9580 | 16.7350 | 17.0130 | 16.7230 | 17.0360 | 16.8770 | 14.9332 | 16.8740 |
| Zr | 40 | 15.7720 | 15.6880 | 15.7740 | 17.6650 | 17.9670 | 17.6510 | 17.9940 | 17.8130 | 15.7470 | 17.8160 |
| Nb | 41 | 16.6120 | 16.5180 | 16.6140 | 18.6190 | 18.9530 | 18.6030 | 18.9950 | 18.9810 | 16.5837 | 18.7860 |
| Мо | 42 | 17.4760 | 17.3710 | 17.4780 | 19.6050 | 19.9620 | 19.5870 | 19.9960 | 19.7730 | 17.4443 | 19.7835 |
| Тс | 43 | 18.3640 | 18.2480 | 18.3660 | 20.6150 | 21.0020 | 20.5950 | 21.0500 | 20.6190 | 18.3283 | 20.8085 |
| Ru | 44 | 19.2760 | 19.1740 | 19.2780 | 21.6530 | 22.0700 | 21.6310 | 22.1040 | 21.8240 | 19.2363 | 21.8615 |
| Rh | 45 | 20.2130 | 20.0700 | 20.2150 | 22.7200 | 23.1690 | 22.6950 | 23.2170 | 22.9130 | 20.1686 | 22.9445 |
| Pd | 46 | 21.1740 | 21.0170 | 21.1760 | 23.8150 | 24.2950 | 23.7870 | 24.3460 | 23.9910 | 21.1248 | 24.0550 |
| Ag | 47 | 22.1590 | 21.9870 | 22.1610 | 24.9380 | 25.4520 | 24.9070 | 25.5120 | 25.1410 | 22.1054 | 25.1950 |
| Cd | 48 | 23.1700 | 22.9800 | 23.1720 | 26.0910 | 26.6390 | 26.0570 | 26.7200 | 26.0960 | 23.1104 | 26.3650 |
| In | 49 | 24.2060 | 23.9980 | 24.2080 | 27.2710 | 27.8560 | 27.2330 | 27.9280 | 27.4940 | 24.1405 | 27.5635 |
| Sn | 50 | 25.2670 | 25.0400 | 25.2690 | 28.4810 | 29.1040 | 28.4390 | 29.1750 | 28.7110 | 25.1955 | 28.7925 |
| Sb | 51 | 26.3550 | 26.1060 | 26.3570 | 29.7210 | 30.3880 | 29.6740 | 30.4604 | 29.9580 | 26.2763 | 30.0545 |
| Те | 52 | 27.4680 | 27.1970 | 27.4700 | 30.9900 | 31.6980 | 30.9390 | 31.8302 | 31.2982 | 27.3821 | 31.3440 |
| Ι  | 53 | 28.6070 | 28.3120 | 28.6090 | 32.2890 | 33.0360 | 32.2340 | 33.2004 | 32.6384 | 28.5137 | 32.6625 |
| Xe | 54 | 29.7740 | 29.4530 | 29.7760 | 33.6190 | 34.4080 | 33.5560 | 34.5706 | 33.9786 | 29.6720 | 34.0135 |
| Cs | 55 | 30.9680 | 30.6200 | 30.9700 | 34.9810 | 35.8150 | 34.9130 | 35.9408 | 35.3188 | 30.8569 | 35.3980 |
| Ва | 56 | 32.1880 | 31.8120 | 32.1900 | 36.3720 | 37.2510 | 36.2980 | 37.3110 | 36.6590 | 32.0681 | 36.8115 |
| La | 57 | 33.4360 | 33.0280 | 33.4380 | 37.7950 | 38.7230 | 37.7140 | 38.8240 | 38.0880 | 33.3059 | 38.2590 |
| Ce | 58 | 34.7140 | 34.2730 | 34.7160 | 39.2510 | 40.2260 | 39.1630 | 40.3370 | 39.5510 | 34.5728 | 39.7385 |
| Pr | 59 | 36.0200 | 35.5440 | 36.0220 | 40.7410 | 41.7670 | 40.6460 | 42.1275 | 41.0960 | 35.8676 | 41.2540 |

| Nd | 60 | 37.3550  | 36.8410  | 37.3570  | 42.2640  | 43.3270  | 42.1590  | 43.9179  | 42.6410  | 37.1898  | 42.7955  |
|----|----|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Pm | 61 | 38.7180  | 38.1650  | 38.7200  | 43.8180  | 44.9290  | 43.7050  | 45.7084  | 44.1860  | 38.5402  | 44.3735  |
| Sm | 62 | 40.1110  | 39.5160  | 40.1130  | 45.4130  | 46.5840  | 45.2890  | 47.4989  | 45.7310  | 39.9195  | 45.9985  |
| Eu | 63 | 41.5350  | 40.8950  | 41.5370  | 47.0360  | 48.2560  | 46.9020  | 49.2893  | 47.3915  | 41.3288  | 47.6460  |
| Gd | 64 | 42.9890  | 42.3020  | 42.9910  | 48.6960  | 49.9640  | 48.5540  | 51.0798  | 49.0520  | 42.7671  | 49.3300  |
| Tb | 65 | 44.4740  | 43.7370  | 44.4760  | 50.3820  | 51.7090  | 50.2280  | 52.8703  | 50.7730  | 44.2358  | 51.0455  |
| Dy | 66 | 45.9990  | 45.2080  | 46.0010  | 52.1190  | 53.4910  | 51.9560  | 54.6607  | 52.4940  | 45.7349  | 52.8050  |
| Но | 67 | 47.5470  | 46.6990  | 47.5490  | 53.8780  | 55.3080  | 53.7070  | 56.4512  | 54.2460  | 47.2644  | 54.5930  |
| Er | 68 | 49.1280  | 48.2210  | 49.1300  | 55.6810  | 57.1640  | 55.4910  | 58.2417  | 56.0400  | 48.8255  | 56.4225  |
| Tm | 69 | 50.7420  | 49.7730  | 50.7440  | 57.5130  | 59.0590  | 57.3030  | 60.0321  | 57.9230  | 50.4186  | 58.2860  |
| Yb | 70 | 52.3890  | 51.3540  | 52.3910  | 59.3740  | 60.9910  | 59.1570  | 61.8226  | 59.7820  | 52.0439  | 60.1825  |
| Lu | 71 | 54.0700  | 52.9650  | 54.0720  | 61.2860  | 62.9600  | 61.0490  | 63.6131  | 61.7490  | 53.7015  | 62.1230  |
| Hf | 72 | 55.7900  | 54.6110  | 55.7920  | 63.2360  | 64.9730  | 62.9790  | 65.4035  | 63.7160  | 55.3973  | 64.1045  |
| Та | 73 | 57.5330  | 56.2770  | 57.5350  | 65.2210  | 67.0110  | 64.9460  | 67.1940  | 65.6830  | 57.1137  | 66.1160  |
| W  | 74 | 59.3180  | 57.9820  | 59.3200  | 67.2440  | 69.1000  | 66.9510  | 69.2940  | 67.7150  | 58.8727  | 68.1720  |
| Re | 75 | 61.1400  | 59.7180  | 61.1420  | 69.3090  | 71.2300  | 68.9940  | 71.4100  | 69.7860  | 60.6662  | 70.2695  |
| Os | 76 | 63.0010  | 61.4870  | 63.0030  | 71.4160  | 73.4040  | 71.0770  | 73.6150  | 71.8950  | 62.4959  | 72.4100  |
| lr | 77 | 64.8960  | 63.2870  | 64.8980  | 73.5600  | 75.6200  | 73.2030  | 75.8210  | 74.0750  | 64.3593  | 74.5900  |
| Pt | 78 | 66.8320  | 65.1230  | 66.8340  | 75.7510  | 77.8830  | 75.3640  | 78.0690  | 76.2700  | 66.2587  | 76.8170  |
| Au | 79 | 68.8040  | 66.9900  | 68.8060  | 77.9850  | 80.1820  | 77.5800  | 80.3910  | 78.5100  | 68.1990  | 79.0835  |
| Hg | 80 | 70.8190  | 68.8940  | 70.8210  | 80.2610  | 82.5320  | 79.8220  | 82.7800  | 80.7500  | 70.1777  | 81.3965  |
| TI | 81 | 72.8720  | 70.8320  | 72.8740  | 82.5750  | 84.9240  | 82.3840  | 85.1900  | 83.3046  | 72.1916  | 83.7495  |
| Pb | 82 | 74.9690  | 72.8040  | 74.9710  | 84.9360  | 87.3670  | 84.4500  | 87.5900  | 85.8592  | 74.2477  | 86.1515  |
| Bi | 83 | 77.1180  | 74.8150  | 77.1200  | 87.3540  | 89.8660  | 86.8310  | 90.1100  | 88.4138  | 76.3435  | 88.6100  |
| Po | 84 | 79.3010  | 76.8630  | 79.3030  | 89.8010  | 92.4030  | 89.2500  | 92.8200  | 90.9684  | 78.4807  | 91.1020  |
| At | 85 | 81.5230  | 78.9430  | 81.5250  | 92.3020  | 94.9830  | 91.7220  | 95.5300  | 93.5230  | 80.6633  | 93.6425  |
| Rn | 86 | 83.7930  | 81.0650  | 83.7950  | 94.8660  | 97.6170  | 94.2460  | 98.2400  | 96.0776  | 82.8767  | 96.2415  |
| Fr | 87 | 86.1140  | 83.2310  | 86.1160  | 97.4770  | 100.3060 | 96.8070  | 100.9500 | 98.6322  | 85.1433  | 98.8915  |
| Ra | 88 | 88.4760  | 85.4340  | 88.4780  | 100.1300 | 103.0390 | 99.4320  | 103.6600 | 101.1868 | 87.4567  | 101.5845 |
| Ac | 89 | 90.8840  | 87.6750  | 90.8860  | 102.6110 | 105.8370 | 102.1010 | 106.3700 | 103.7414 | 89.8127  | 104.2240 |
| Th | 90 | 93.3580  | 89.9520  | 93.3600  | 105.6110 | 108.6900 | 104.8310 | 109.0800 | 106.2960 | 92.2177  | 107.1505 |
| Ра | 91 | 95.8830  | 92.2870  | 95.8850  | 108.4350 | 111.6060 | 107.6060 | 112.0450 | 109.1530 | 94.6743  | 110.0205 |
| U  | 92 | 98.4400  | 94.6590  | 98.4420  | 111.3030 | 114.5610 | 110.4240 | 115.0100 | 112.0100 | 97.1810  | 112.9320 |
| NP | 93 | 101.0680 | 97.0770  | 101.0700 | 114.2430 | 117.5910 | 113.3120 | 117.9750 | 114.8670 | 99.7377  | 115.9170 |
| PU | 94 | 103.7610 | 99.5520  | 103.7630 | 117.2610 | 120.7030 | 116.2770 | 120.9400 | 117.7240 | 102.3580 | 118.9820 |
| AM | 95 | 106.5230 | 102.0830 | 106.5250 | 120.3600 | 123.8910 | 119.3170 | 123.9050 | 120.5810 | 105.0430 | 122.1255 |

| СМ | 96  | 109.2900 | 104.4410 | 109.2920 | 123.4230 | 127.0660 | 122.3250 | 126.8700 | 123.4380 | 107.6737 | 125.2445 |
|----|-----|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| BK | 97  | 112.1380 | 107.2050 | 112.1400 | 126.6630 | 130.3550 | 125.4430 | 129.8350 | 126.2950 | 110.4937 | 128.5090 |
| CR | 98  | 116.0300 | 110.7100 | 116.0320 | 130.8510 | 134.6810 | 129.6010 | 132.8000 | 129.1520 | 114.2567 | 132.7660 |
| ES | 99  | 119.0800 | 113.4700 | 119.0820 | 134.2380 | 138.1690 | 132.9160 | 135.7650 | 132.0090 | 117.2100 | 136.2035 |
| FM | 100 | 122.1900 | 116.2800 | 122.1920 | 137.6930 | 141.7240 | 136.3470 | 138.7300 | 134.8660 | 120.2200 | 139.7085 |

### 9 Appendix 2: Files for L shell calculations

For the L-subshell relative intensity calculations the data tables, stored in the following files, are needed:

- upx1.input atomic mass and edges for ECPSSR ionisation cross section calculations
- LsubshellEmissionRatesScofieldDHF-15Feb11.txt emission rates for the Scofield option (Scofield 1974b).
- LsubshellEmissionRatesSalemExpt-15Feb11.txt emission rates for the Salem option (Salem et al; 1974).
- LsubshellwLfijCampbelKrauseat15Feb11.txt fluorescence yield and Coster-Kronig probabilities for the two options (Krause 1979, Campbell 2003, 2009).
- **krause\_kd13.txt** the Krause k'<sub>1,3</sub> Coster-Kronig probability.
- LtotalwLbarPuriEJCBambynekat23Feb11.txt L shell total fluorescence yield from Puri et al. (1993), Clayton (1986) and Bambynek et al. (1972).
- Lshellenergiesa1-2b1-6g1-6at13Feb11.txt L-shell characteristic X-ray energies.

### 9.1 L shell atomic mass and edges

The L shell atomic mass and edges for ionisation cross section calculations are stored in file **upx1.input**:

### Table 9: L shell edges.

```
* ROOTS
0.095012509837637440185D0
0.281603550779258913230D0
0.458016777657227386342D0
0.617876244402643748447D0
0.755404408355003033895D0
0.865631202387831743880D0
0.944575023073232576078D0
0.989400934991649932596D0
   WEIGHTS
0.189450610455068496285D0
0.182603415044923588867D0
0.169156519395002538189D0
0.149595988816576732081D0
0.124628971255533872052D0
0.095158511682492784810D0
0.062253523938647892863D0
0.027152459411754094852D0
* SEND=1.0D-2 RNQW=10.0D0 RNQQ=10.0D0
          20.0d0
 1.0d-3
                     20.0d0
* 6.0(0.25)10.0 10.5(0.5)20.0
                                -1
* 0.1(0.02)0.5 1.0(0.5)6.0
                            -1
ENEGRY P 0.1(.02)0.5 0.6(0.1)4 4.2(.2)10 -1
* ENERGY D 0.2(0.05)1 1.2(.2)10 10.5(.5)20
                                              -1
* ENERGY HE 0.2(0.1)2 2.2(.2)4.2 4.5(0.5)15 -1
* ENERGY ALL 0.5(0.1)2 2.2(0.2)5 5.5(0.5)15 16(1)50
                                                       -1
* ENERGY LI 0.5 0.6(.2)4 4.5(.5)10 11(1)50 52(2)80
                                                    -1
* ENERGY SI S 5(1)48 50(2)100 105(5)150 160(20)300
                                                      -1
 ADIAB=0 ZERO=NONADIABATIC CORRECT OUT, ONE=IN
 CPSSR=1 ZERO=CPSSR, ONE=ECPSSR, TWO=ECPSSR-COHEN
 PROTON 1.0 1.007825
* DEUTERIUM 1.0 2.01410
* HELIUM 2.0 4.0026
* LI 3.0 7.01601
```

| * BE                 | 4.0 9.012              | 19       |                |                |       |
|----------------------|------------------------|----------|----------------|----------------|-------|
| * B<br>* 0           | 5.0 11.00              | 931      |                |                |       |
| * N                  | 6.0 12.00<br>7 0 14 00 | 207      |                |                |       |
| * 0                  | 8.0 15.99              | 491      |                |                |       |
| * F                  | 9.0 18.99              | 84       |                |                |       |
| * NE                 | 10.0 19.               | 99244    |                |                |       |
| * SI                 | 14.0 27.               | 97693    |                |                |       |
| * S                  | 16.0 31.               | 97207    |                |                |       |
| * 'I'AR'<br>* 'T'AR' | GET Z MASS             | EDGES    |                |                |       |
| *                    | GEI Z MASS<br>7        | Magg     | т.1            | т.2            | т.3   |
| *AR                  | 18                     | 39 948   | 0 320          | 0 247          | 0 245 |
| TT.                  | 22                     | 47 9     | 0.520          | 0 462          | 0.215 |
| CR                   | 22                     | 51,996   | 0.695          | 0.584          | 0.575 |
| MN                   | 25                     | 54.93805 | 0.769          | 0.651          | 0.640 |
| FE                   | 26                     | 55.847   | 0.846          | 0.721          | 0.708 |
| NI                   | 28                     | 58.71    | 1.012          | 0.871          | 0.855 |
| CU                   | 29                     | 63.54    | 1.100          | 0.951          | 0.932 |
| ZN                   | 30                     | 65.37    | 1.196          | 1.043          | 1.021 |
| GE                   | 32                     | 72.59    | 1.414          | 1.248          | 1.217 |
| AS                   | 33                     | 74.9216  | 1.530          | 1.359          | 1.325 |
| SE                   | 34                     | 78.96    | 1.654          | 1.476          | 1.436 |
| BR                   | 35                     | 79.909   | 1.794          | 1.596          | 1.550 |
| KR                   | 36                     | 83.8     | 1.921          | 1.727          | 1.675 |
| RB                   | 37                     | 85.47    | 2.067          | 1.866          | 1.806 |
| SR                   | 38                     | 87.62    | 2.216          | 2.007          | 1.94  |
| Y                    | 39                     | 88.905   | 2.369          | 2.145          | 2.079 |
| ZR                   | 40                     | 91.22    | 2.547          | 2.307          | 2.223 |
| NB                   | 41                     | 92.906   | 2.698          | 2.465          | 2.371 |
| MO                   | 42                     | 95.94    | 2.866          | 2.625          | 2.520 |
| TC                   | 43                     | 99       | 3.054          | 2.795          | 2.677 |
| RU                   | 44                     | 101.07   | 3.236          | 2.966          | 2.837 |
| RH                   | 45                     | 102.905  | 3.419          | 3.146          | 3.003 |
| PD                   | 46                     | 106.4    | 3.617          | 3.330          | 3.173 |
| AG                   | 47                     | 107.87   | 3.806          | 3.524          | 3.351 |
| CD                   | 48                     | 112.4    | 4.019          | 3.727          | 3.537 |
|                      | 49                     | 114.82   | 4.237          | 3.938          | 3./30 |
| SN                   | 50                     | 121 75   | 4.465          | 4.150          | 3.929 |
| 5B<br>TTT            | 51                     | 121.75   | 4.090          | 4.301<br>1.610 | 4.134 |
| т<br>Т               | 52                     | 126 9044 | 4.939<br>5 100 | 4.012          | 4.541 |
| T<br>VF              | 54                     | 131 3    | 5 452          | 5 100          | 4 781 |
| CS                   | 55                     | 132 905  | 5 720          | 5 358          | 5 011 |
| BA                   | 56                     | 137.34   | 5.995          | 5.624          | 5.247 |
| LA                   | 57                     | 138.91   | 6.267          | 5.891          | 5.483 |
| CE                   | 58                     | 140.12   | 6.549          | 6.165          | 5.724 |
| PR                   | 59                     | 140.907  | 6.846          | 6.443          | 5.968 |
| ND                   | 60                     | 144.24   | 7.126          | 6.722          | 6.208 |
| PM                   | 61                     | 145      | 7.427          | 7.012          | 6.459 |
| SM                   | 62                     | 150.35   | 7.737          | 7.312          | 6.717 |
| EU                   | 63                     | 151.96   | 8.069          | 7.624          | 6.983 |
| GD                   | 64                     | 157.25   | 8.376          | 7.931          | 7.243 |
| TB                   | 65                     | 158.924  | 8.708          | 8.252          | 7.515 |
| DY                   | 66                     | 162.5    | 9.083          | 8.621          | 7.850 |
| HO                   | 67                     | 164.93   | 9.395          | 8.919          | 8.071 |
| ER                   | 68                     | 167.26   | 9.776          | 9.263          | 8.364 |
| TM                   | 69                     | 168.934  | 10.116         | 9.618          | 8.648 |

| YB        | 70     | 173.04     | 10.486        | 9.978  | 8.943  |
|-----------|--------|------------|---------------|--------|--------|
| LU        | 71     | 174.97     | 10.867        | 10.345 | 9.241  |
| HF        | 72     | 178.49     | 11.264        | 10.739 | 9.561  |
| TA        | 73     | 180.948    | 11.680        | 11.139 | 9.881  |
| W         | 74     | 183.85     | 12.098        | 11.542 | 10.204 |
| Re        | 75     | 186.2      | 12.522        | 11.955 | 10.531 |
| OS        | 76     | 190.2      | 12.965        | 12.383 | 10.869 |
| IR        | 77     | 192.2      | 13.424        | 12.824 | 11.215 |
| PT        | 78     | 195.09     | 13.892        | 13.273 | 11.564 |
| AU        | 79     | 196.967    | 14.353        | 13.733 | 11.918 |
| HG        | 80     | 200.59     | 14.846        | 14.209 | 12.284 |
| TL        | 81     | 204.37     | 15.344        | 14.698 | 12.657 |
| PB        | 82     | 207.19     | 15.860        | 15.198 | 13.035 |
| BI        | 83     | 208.98     | 16.385        | 15.708 | 13.418 |
| PO        | 84     | 210        | 16.935        | 16.244 | 13.817 |
| AT        | 85     | 210        | 17.493        | 16.784 | 14.213 |
| RN        | 86     | 222        | 18.058        | 17.337 | 14.618 |
| FR        | 87     | 223        | 18.639        | 17.906 | 15.031 |
| RA        | 88     | 226        | 19.233        | 19.078 | 15.442 |
| AC        | 89     | 227        | 19.842        | 19.078 | 15.865 |
| TH        | 90     | 232.038    | 20.470        | 19.692 | 16.300 |
| PA        | 91     | 231.0359   | 21.104        | 20.313 | 16.733 |
| U         | 92     | 238.03     | 21.756        | 20.947 | 17.167 |
| NP        | 93     | 237        | 22.426        | 21.600 | 17.610 |
| PU        | 94     | 239        | 23.095        | 22.263 | 18.053 |
| AM        | 95     | 242        | 23.793        | 22.944 | 18.526 |
| CM        | 96     | 245        | 24.503        | 23.640 | 18.990 |
| END -1 1  | 1 1 1  |            |               |        |        |
| END ALL   | -1 1   |            |               |        |        |
| 123 -     | 1      |            |               |        |        |
| ION Z MA  | SS 2.0 | 4.0026     |               |        |        |
| * TARGET  | Z MASS | EDGES      | <b>BOO 11</b> | 10     |        |
| AU 79.0 1 | 96.967 | 14.353 13. | /33 11.9      | 918    |        |
| END -1 1  |        |            |               |        |        |
| ымр апр   | - T T  |            |               |        |        |

### 9.2 L shell emission rates

The emission rates for the Scofield (Scofield 1974b) option are stored in file

#### LsubshellEmissionRatesScofieldDHF-15Feb11.txt

and the emission rates for the Salem option (Salem et al; 1974) are stored in file

#### LsubshellEmissionRatesSalemExpt-15Feb11.txt.

#### 9.2.1 File LsubshellEmissionRatesScofieldDHF-15Feb11.txt

The three tables that follow are stored site by side in the file. Please note that the element name and Z are included in the second tables only in this appendix and not in the original file.
| *Scofie         | eld L s | subshell | emission rate | S           |           |            |       |        |        |
|-----------------|---------|----------|---------------|-------------|-----------|------------|-------|--------|--------|
| *Scofie         | eld Ph  | ys Rev   | A10(1974)1507 | ′-1510 with | erratum A | 12(1975)34 | 5     |        |        |
| *Lβ <b>3</b> =1 | .000    |          |               |             |           |            |       |        |        |
| *Elt            | Ζ       | Lβ3      | Lβ4           | Lγ2         | Lγ3       | Lγ44'      | L1P23 | Total  | Sum    |
| MN              | 25      | 1.000    | 0.5321        | 0           | 0         | 0          | 0     | 1.6000 | 1.5321 |
| FE              | 26      | 1.000    | 0.5340        | 0           | 0         | 0          | 0     | 1.5817 | 1.5340 |
| CO              | 27      | 1.000    | 0.5370        | 0           | 0         | 0          | 0     | 1.5802 | 1.5370 |
| NI              | 28      | 1.000    | 0.5400        | 0           | 0         | 0          | 0     | 1.5787 | 1.5400 |
| CU              | 29      | 1.000    | 0.5428        | 0           | 0         | 0          | 0     | 1.5889 | 1.5428 |
| ZN              | 30      | 1.000    | 0.5455        | 0           | 0         | 0          | 0     | 1.5991 | 1.5455 |
| GA              | 31      | 1.000    | 0.5483        | 0.00139     | 0.00295   | 0          | 0     | 1.6093 | 1.5526 |
| GE              | 32      | 1.000    | 0.5510        | 0.0135      | 0.0246    | 0          | 0     | 1.6195 | 1.5891 |
| AS              | 33      | 1.000    | 0.5538        | 0.0256      | 0.0463    | 0          | 0     | 1.6558 | 1.6256 |
| SE              | 34      | 1.000    | 0.5565        | 0.0377      | 0.0679    | 0          | 0     | 1.6922 | 1.6621 |
| BR              | 35      | 1.000    | 0.5593        | 0.0498      | 0.0896    | 0          | 0     | 1.7285 | 1.6986 |
| KR              | 36      | 1.000    | 0.5620        | 0.0619      | 0.1112    | 0          | 0     | 1.7648 | 1.7351 |
| RB              | 37      | 1.000    | 0.5653        | 0.0686      | 0.1226    | 0          | 0     | 1.7860 | 1.7564 |
| SR              | 38      | 1.000    | 0.5685        | 0.0752      | 0.1340    | 0          | 0     | 1.8073 | 1.7777 |
| Y               | 39      | 1.000    | 0.5718        | 0.0819      | 0.1454    | 0          | 0     | 1.8285 | 1.7990 |
| ZR              | 40      | 1.000    | 0.5750        | 0.0885      | 0.1568    | 0          | 0     | 1.8497 | 1.8203 |
| NB              | 41      | 1.000    | 0.5788        | 0.0919      | 0.1618    | 0          | 0     | 1.8624 | 1.8324 |
| МО              | 42      | 1.000    | 0.5825        | 0.0953      | 0.1667    | 0          | 0     | 1.8750 | 1.8445 |
| тс              | 43      | 1.000    | 0.5863        | 0.0987      | 0.1717    | 0          | 0     | 1.8877 | 1.8566 |
| RU              | 44      | 1.000    | 0.5900        | 0.1021      | 0.1766    | 0          | 0     | 1.9003 | 1.8687 |
| RH              | 45      | 1.000    | 0.5945        | 0.1056      | 0.1814    | 0          | 0     | 1.9141 | 1.8814 |
| PD              | 46      | 1.000    | 0.5990        | 0.1090      | 0.1862    | 0          | 0     | 1.9279 | 1.8942 |
| AG              | 47      | 1.000    | 0.6035        | 0.1125      | 0.1909    | 0          | 0     | 1.9416 | 1.9069 |
| CD              | 48      | 1.000    | 0.6080        | 0.1159      | 0.1957    | 0          | 0     | 1.9554 | 1.9196 |
| IN              | 49      | 1.000    | 0.6100        | 0.1203      | 0.2020    | 0          | 0     | 1.9750 | 1.9322 |
| SN              | 50      | 1.000    | 0.6120        | 0.1246      | 0.2082    | 0.0104     | 0     | 1.9945 | 1.9552 |
| SB              | 51      | 1.000    | 0.6170        | 0.1285      | 0.2134    | 0.0201     | 0     | 2.0197 | 1.9790 |
| TE              | 52      | 1.000    | 0.6220        | 0.1324      | 0.2187    | 0.0298     | 0     | 2.0448 | 2.0028 |
| 1               | 53      | 1.000    | 0.6270        | 0.1362      | 0.2239    | 0.0394     | 0     | 2.0700 | 2.0265 |
| XE              | 54      | 1.000    | 0.6320        | 0.1401      | 0.2291    | 0.0491     | 0     | 2.0951 | 2.0503 |
| CS              | 55      | 1.000    | 0.6375        | 0.1443      | 0.2344    | 0.0569     | 0     | 2.1207 | 2.0731 |
| BA              | 56      | 1.000    | 0.6430        | 0.1485      | 0.2396    | 0.0647     | 0     | 2.1463 | 2.0958 |
| LA              | 57      | 1.000    | 0.6493        | 0.1511      | 0.2416    | 0.0643     | 0     | 2.1585 | 2.1062 |
| CE              | 58      | 1.000    | 0.6555        | 0.1536      | 0.2436    | 0.0638     | 0     | 2.1707 | 2.1165 |
| PR              | 59      | 1.000    | 0.6618        | 0.1562      | 0.2456    | 0.0634     | 0     | 2.1828 | 2.1269 |
| ND              | 60      | 1.000    | 0.6680        | 0.1587      | 0.2476    | 0.0629     | 0     | 2.1950 | 2.1372 |
| PM              | 61      | 1.000    | 0.6750        | 0.1612      | 0.2491    | 0.0624     | 0     | 2.2090 | 2.1476 |
| SM              | 62      | 1.000    | 0.6820        | 0.1636      | 0.2505    | 0.0619     | 0     | 2.2229 | 2.1580 |
| EU              | 63      | 1.000    | 0.6897        | 0.1661      | 0.2517    | 0.0614     | 0     | 2.2373 | 2.1689 |
| GD              | 64      | 1.000    | 0.6973        | 0.1685      | 0.2529    | 0.0610     | 0     | 2.2516 | 2.1797 |
| ТВ              | 65      | 1.000    | 0.7050        | 0.1710      | 0.2541    | 0.0605     | 0     | 2.2660 | 2.1906 |
| DY              | 66      | 1.000    | 0.7140        | 0.1737      | 0.2551    | 0.0602     | 0     | 2.2821 | 2.2029 |
| НО              | 67      | 1.000    | 0.7230        | 0.1763      | 0.2561    | 0.0598     | 0     | 2.2982 | 2.2152 |
| ER              | 68      | 1.000    | 0.7320        | 0.1790      | 0.2571    | 0.0595     | 0     | 2.3143 | 2.2276 |

Table 10: L shell emission rates, L1 Subshell, (Scofield, 1974).

| ТМ | 69 | 1.000 | 0.7410 | 0.1816 | 0.2581 | 0.0591 | 0       | 2.3304 | 2.2399 |
|----|----|-------|--------|--------|--------|--------|---------|--------|--------|
| YB | 70 | 1.000 | 0.7500 | 0.1843 | 0.2591 | 0.0588 | 0       | 2.3465 | 2.2522 |
| LU | 71 | 1.000 | 0.7610 | 0.1881 | 0.2614 | 0.0623 | 0       | 2.3728 | 2.2728 |
| HF | 72 | 1.000 | 0.7720 | 0.1920 | 0.2636 | 0.0659 | 0       | 2.3991 | 2.2935 |
| ТА | 73 | 1.000 | 0.7830 | 0.1958 | 0.2659 | 0.0694 | 0       | 2.4254 | 2.3141 |
| W  | 74 | 1.000 | 0.7955 | 0.2004 | 0.2686 | 0.0725 | 0       | 2.4543 | 2.3369 |
| RE | 75 | 1.000 | 0.8080 | 0.2049 | 0.2712 | 0.0756 | 0       | 2.4831 | 2.3597 |
| OS | 76 | 1.000 | 0.8205 | 0.2095 | 0.2739 | 0.0787 | 0       | 2.5120 | 2.3825 |
| IN | 77 | 1.000 | 0.8330 | 0.2140 | 0.2765 | 0.0818 | 0       | 2.5408 | 2.4053 |
| PT | 78 | 1.000 | 0.8486 | 0.2192 | 0.2794 | 0.0863 | 0       | 2.5791 | 2.4335 |
| AU | 79 | 1.000 | 0.8642 | 0.2244 | 0.2823 | 0.0909 | 0       | 2.6175 | 2.4618 |
| HG | 80 | 1.000 | 0.8798 | 0.2296 | 0.2852 | 0.0954 | 0       | 2.6558 | 2.4900 |
| TL | 81 | 1.000 | 0.8954 | 0.2348 | 0.2881 | 0.1000 | 0       | 2.6942 | 2.5183 |
| PB | 82 | 1.000 | 0.9110 | 0.2400 | 0.2910 | 0.1045 | 0.00368 | 2.7325 | 2.5502 |
| BI | 83 | 1.000 | 0.9305 | 0.2464 | 0.2938 | 0.1093 | 0.00732 | 2.7818 | 2.5873 |
| PO | 84 | 1.000 | 0.9500 | 0.2529 | 0.2965 | 0.1141 | 0.01097 | 2.8311 | 2.6244 |
| AT | 85 | 1.000 | 0.9695 | 0.2593 | 0.2993 | 0.1188 | 0.01462 | 2.8803 | 2.6615 |
| HN | 86 | 1.000 | 0.9890 | 0.2657 | 0.3020 | 0.1236 | 0.01826 | 2.9296 | 2.6986 |
| FR | 87 | 1.000 | 1.0148 | 0.2741 | 0.3050 | 0.1288 | 0.02000 | 2.9919 | 2.7427 |
| BA | 88 | 1.000 | 1.0407 | 0.2825 | 0.3080 | 0.1339 | 0.02174 | 3.0542 | 2.7868 |
| AC | 89 | 1.000 | 1.0665 | 0.2909 | 0.3110 | 0.1391 | 0.02348 | 3.1166 | 2.8309 |
| TH | 90 | 1.000 | 1.0923 | 0.2992 | 0.3140 | 0.1442 | 0.02522 | 3.1789 | 2.8750 |
| PA | 91 | 1.000 | 1.1182 | 0.3076 | 0.3170 | 0.1494 | 0.02696 | 3.2412 | 2.9191 |
| U  | 92 | 1.000 | 1.1440 | 0.3160 | 0.3200 | 0.1545 | 0.02870 | 3.3035 | 2.9632 |
| NP | 93 | 1.000 | 1.1765 | 0.3260 | 0.3235 | 0.1598 | 0.02960 | 3.3824 | 3.0154 |
| PU | 94 | 1.000 | 1.2090 | 0.3360 | 0.3270 | 0.1650 | 0.03050 | 3.4612 | 3.0675 |
| AM | 95 | 1.000 | 1.2415 | 0.3460 | 0.3305 | 0.1703 | 0.03140 | 3.5401 | 3.1197 |
| СМ | 96 | 1.000 | 1.2740 | 0.3560 | 0.3340 | 0.1755 | 0.03230 | 3.6189 | 3.1718 |

Table 11: L shell emission rates, L2 SubShell, (Scofield, 1974).

|      |    | Scofie | ld L subshe | II emission I | rates       |            |            |        |
|------|----|--------|-------------|---------------|-------------|------------|------------|--------|
|      |    | Scofie | ld Phys Rev | A10(1974)1    | 507-1510 wi | th erratum | A12(1975): | 345    |
| _    | _  | Lβ1=1. | .000        | Added Lγ6     | +Lγ8        |            |            |        |
| *Elt | Z  | Lβ1    | Lη          | Lγ1           | Lγ5         | Lγ6        | Total      | Sum    |
| MN   | 25 | 1.000  | 0.10390     | 0             | 0.00933     | 0          | 1.1129     | 1.1132 |
| FE   | 26 | 1.000  | 0.09050     | 0             | 0.00791     | 0          | 1.0985     | 1.0984 |
| CO   | 27 | 1.000  | 0.07710     | 0             | 0.00649     | 0          | 1.0841     | 1.0836 |
| NI   | 28 | 1.000  | 0.06370     | 0             | 0.00507     | 0          | 1.0697     | 1.0688 |
| CU   | 29 | 1.000  | 0.05833     | 0             | 0.00484     | 0          | 1.0639     | 1.0632 |
| ZN   | 30 | 1.000  | 0.05295     | 0             | 0.00461     | 0          | 1.0581     | 1.0576 |
| GA   | 31 | 1.000  | 0.04758     | 0             | 0.00438     | 0          | 1.0523     | 1.0520 |
| GE   | 32 | 1.000  | 0.04220     | 0             | 0.00415     | 0          | 1.0465     | 1.0464 |
| AS   | 33 | 1.000  | 0.04063     | 0             | 0.00428     | 0          | 1.0451     | 1.0449 |
| SE   | 34 | 1.000  | 0.03905     | 0             | 0.00441     | 0          | 1.0437     | 1.0435 |
| BR   | 35 | 1.000  | 0.03748     | 0             | 0.00454     | 0          | 1.0422     | 1.0420 |
| KR   | 36 | 1.000  | 0.03590     | 0             | 0.00467     | 0          | 1.0408     | 1.0406 |
| RB   | 37 | 1.000  | 0.03503     | 0             | 0.00481     | 0          | 1.0444     | 1.0398 |

| SR | 38 | 1.000 | 0.03415 | 0       | 0.00495 | 0        | 1.0479 | 1.0391 |
|----|----|-------|---------|---------|---------|----------|--------|--------|
| Y  | 39 | 1.000 | 0.03327 | 0.00336 | 0.00510 | 0        | 1.0515 | 1.0417 |
| ZR | 40 | 1.000 | 0.03240 | 0.01585 | 0.00524 | 0.000722 | 1.0550 | 1.0542 |
| NB | 41 | 1.000 | 0.03190 | 0.02834 | 0.00532 | 0.000611 | 1.0669 | 1.0662 |
| MO | 42 | 1.000 | 0.03140 | 0.04083 | 0.00541 | 0.000501 | 1.0789 | 1.0781 |
| TC | 43 | 1.000 | 0.03090 | 0.05331 | 0.00549 | 0.000390 | 1.0908 | 1.0901 |
| RU | 44 | 1.000 | 0.03040 | 0.06580 | 0.00558 | 0.000279 | 1.1027 | 1.1021 |
| RH | 45 | 1.000 | 0.03019 | 0.07845 | 0.00563 | 0.000356 | 1.1151 | 1.1146 |
| PD | 46 | 1.000 | 0.02998 | 0.09110 | 0.00569 | 0.000433 | 1.1275 | 1.1272 |
| AG | 47 | 1.000 | 0.02978 | 0.10375 | 0.00575 | 0.000510 | 1.1399 | 1.1398 |
| CD | 48 | 1.000 | 0.02957 | 0.11640 | 0.00580 | 0.000587 | 1.1523 | 1.1524 |
| IN | 49 | 1.000 | 0.02935 | 0.12520 | 0.00589 | 0.000671 | 1.1615 | 1.1611 |
| SN | 50 | 1.000 | 0.02912 | 0.13400 | 0.00598 | 0.000754 | 1.1706 | 1.1699 |
| SB | 51 | 1.000 | 0.02894 | 0.14103 | 0.00607 | 0.000818 | 1.1776 | 1.1769 |
| TE | 52 | 1.000 | 0.02876 | 0.14805 | 0.00616 | 0.000883 | 1.1846 | 1.1839 |
| I  | 53 | 1.000 | 0.02859 | 0.15507 | 0.00625 | 0.000947 | 1.1915 | 1.1909 |
| XE | 54 | 1.000 | 0.02841 | 0.16210 | 0.00634 | 0.001010 | 1.1985 | 1.1979 |
| CS | 55 | 1.000 | 0.02828 | 0.16810 | 0.00641 | 0.001090 | 1.2038 | 1.2039 |
| BA | 56 | 1.000 | 0.02814 | 0.17410 | 0.00648 | 0.001170 | 1.2090 | 1.2099 |
| LA | 57 | 1.000 | 0.02803 | 0.17573 | 0.00650 | 0.001160 | 1.2112 | 1.2114 |
| CE | 58 | 1.000 | 0.02792 | 0.17735 | 0.00652 | 0.001160 | 1.2134 | 1.2130 |
| PR | 59 | 1.000 | 0.02782 | 0.17898 | 0.00653 | 0.001150 | 1.2156 | 1.2145 |
| ND | 60 | 1.000 | 0.02771 | 0.18060 | 0.00655 | 0.001140 | 1.2178 | 1.2160 |
| PM | 61 | 1.000 | 0.02763 | 0.18175 | 0.00656 | 0.001130 | 1.2179 | 1.2171 |
| SM | 62 | 1.000 | 0.02755 | 0.18290 | 0.00657 | 0.001120 | 1.2180 | 1.2181 |
| EU | 63 | 1.000 | 0.02749 | 0.18373 | 0.00658 | 0.001110 | 1.2192 | 1.2189 |
| GD | 64 | 1.000 | 0.02744 | 0.18457 | 0.00659 | 0.001100 | 1.2203 | 1.2197 |
| ТВ | 65 | 1.000 | 0.02738 | 0.18540 | 0.00660 | 0.001090 | 1.2215 | 1.2205 |
| DY | 66 | 1.000 | 0.02735 | 0.18612 | 0.00661 | 0.001080 | 1.2223 | 1.2212 |
| HO | 67 | 1.000 | 0.02733 | 0.18684 | 0.00662 | 0.001080 | 1.2231 | 1.2219 |
| ER | 68 | 1.000 | 0.02730 | 0.18756 | 0.00664 | 0.001070 | 1.2238 | 1.2226 |
| ТМ | 69 | 1.000 | 0.02728 | 0.18828 | 0.00665 | 0.001060 | 1.2246 | 1.2233 |
| YB | 70 | 1.000 | 0.02725 | 0.18900 | 0.00666 | 0.001050 | 1.2254 | 1.2240 |
| LU | 71 | 1.000 | 0.02725 | 0.19120 | 0.00670 | 0.001090 | 1.2291 | 1.2262 |
| HF | 72 | 1.000 | 0.02726 | 0.19340 | 0.00673 | 0.002480 | 1.2328 | 1.2299 |
| TA | 73 | 1.000 | 0.02726 | 0.19560 | 0.00677 | 0.005560 | 1.2365 | 1.2352 |
| W  | 74 | 1.000 | 0.02729 | 0.19800 | 0.00682 | 0.008640 | 1.2423 | 1.2408 |
| RE | 75 | 1.000 | 0.02733 | 0.20040 | 0.00687 | 0.011710 | 1.2481 | 1.2463 |
| OS | 76 | 1.000 | 0.02736 | 0.20280 | 0.00692 | 0.014790 | 1.2539 | 1.2519 |
| IN | 77 | 1.000 | 0.02739 | 0.20520 | 0.00697 | 0.017880 | 1.2597 | 1.2574 |
| PT | 78 | 1.000 | 0.02744 | 0.20710 | 0.00702 | 0.020410 | 1.2643 | 1.2620 |
| AU | 79 | 1.000 | 0.02749 | 0.20900 | 0.00707 | 0.022950 | 1.2689 | 1.2665 |
| HG | 80 | 1.000 | 0.02754 | 0.21090 | 0.00713 | 0.025480 | 1.2736 | 1.2711 |
| TL | 81 | 1.000 | 0.02759 | 0.21280 | 0.00718 | 0.028020 | 1.2782 | 1.2756 |
| PB | 82 | 1.000 | 0.02764 | 0.21470 | 0.00723 | 0.030550 | 1.2828 | 1.2801 |
| BI | 83 | 1.000 | 0.02772 | 0.21693 | 0.00729 | 0.032720 | 1.2875 | 1.2847 |
| PO | 84 | 1.000 | 0.02780 | 0.21915 | 0.00735 | 0.034900 | 1.2921 | 1.2892 |
| AT | 85 | 1.000 | 0.02787 | 0.22137 | 0.00741 | 0.037070 | 1.2968 | 1.2937 |
| HN | 86 | 1.000 | 0.02795 | 0.22360 | 0.00747 | 0.039240 | 1.3014 | 1.2983 |
| FR | 87 | 1.000 | 0.02806 | 0.22578 | 0.00754 | 0.040950 | 1.3057 | 1.3023 |

| BA | 88 | 1.000 | 0.02816 | 0.22797 | 0.00760 | 0.042650 | 1.3100 | 1.3064 |
|----|----|-------|---------|---------|---------|----------|--------|--------|
| AC | 89 | 1.000 | 0.02827 | 0.23015 | 0.00766 | 0.044360 | 1.3143 | 1.3104 |
| TH | 90 | 1.000 | 0.02838 | 0.23233 | 0.00773 | 0.046080 | 1.3186 | 1.3145 |
| PA | 91 | 1.000 | 0.02848 | 0.23452 | 0.00780 | 0.047780 | 1.3229 | 1.3186 |
| U  | 92 | 1.000 | 0.02859 | 0.23670 | 0.00786 | 0.049490 | 1.3272 | 1.3226 |
| NP | 93 | 1.000 | 0.02872 | 0.23880 | 0.00793 | 0.050630 | 1.3305 | 1.3261 |
| PU | 94 | 1.000 | 0.02885 | 0.24090 | 0.00800 | 0.051770 | 1.3338 | 1.3295 |
| AM | 95 | 1.000 | 0.02898 | 0.24300 | 0.00807 | 0.052910 | 1.3371 | 1.3330 |
| СМ | 96 | 1.000 | 0.02911 | 0.24510 | 0.00814 | 0.054050 | 1.3404 | 1.3364 |

|      |    | Scofield L subs | hell emissio | n rates      |              |           |         |        |        |
|------|----|-----------------|--------------|--------------|--------------|-----------|---------|--------|--------|
|      |    | Scofield Phys F | Rev A10(1974 | )1507-1510 w | vith erratum | A12(1975) | 345     |        |        |
|      |    |                 | •            | Added        |              |           |         |        |        |
|      |    | Lα(1+2)=1.000   |              | Lβ5+Lβ7      |              |           |         |        |        |
| *Elt | Ζ  | Lα1             | Lα2          | LI           | Lβ2,15       | Lβ5       | Lβ6     | Total  | Sum    |
| MN   | 25 | 0.89738         | 0.10262      | 0.10804      | 0            | 0         | 0.00965 | 1.1187 | 1.1177 |
| FE   | 26 | 0.89734         | 0.10266      | 0.09452      | 0            | 0         | 0.00821 | 1.1027 | 1.1027 |
| CO   | 27 | 0.89730         | 0.10270      | 0.08099      | 0            | 0         | 0.00677 | 1.0868 | 1.0878 |
| NI   | 28 | 0.89726         | 0.10274      | 0.06747      | 0            | 0         | 0.00534 | 1.0709 | 1.0728 |
| CU   | 29 | 0.89734         | 0.10266      | 0.06213      | 0            | 0         | 0.00512 | 1.0658 | 1.0673 |
| ZN   | 30 | 0.89742         | 0.10258      | 0.05679      | 0            | 0         | 0.00491 | 1.0606 | 1.0617 |
| GA   | 31 | 0.89750         | 0.10250      | 0.05144      | 0            | 0         | 0.00468 | 1.0555 | 1.0561 |
| GE   | 32 | 0.89759         | 0.10241      | 0.04610      | 0            | 0         | 0.00447 | 1.0504 | 1.0506 |
| AS   | 33 | 0.89767         | 0.10233      | 0.04469      | 0            | 0         | 0.00466 | 1.0493 | 1.0493 |
| SE   | 34 | 0.89775         | 0.10225      | 0.04327      | 0            | 0         | 0.00486 | 1.0482 | 1.0481 |
| BR   | 35 | 0.89783         | 0.10217      | 0.04185      | 0            | 0         | 0.00505 | 1.0471 | 1.0469 |
| KR   | 36 | 0.89791         | 0.10209      | 0.04043      | 0            | 0         | 0.00523 | 1.0460 | 1.0457 |
| RB   | 37 | 0.89795         | 0.10205      | 0.03978      | 0            | 0         | 0.00544 | 1.0494 | 1.0452 |
| SR   | 38 | 0.89799         | 0.10201      | 0.03913      | 0            | 0         | 0.00566 | 1.0528 | 1.0448 |
| Y    | 39 | 0.89803         | 0.10197      | 0.03849      | 0.00351      | 0         | 0.00586 | 1.0563 | 1.0479 |
| ZR   | 40 | 0.89807         | 0.10193      | 0.03784      | 0.01585      | 0.000834  | 0.00607 | 1.0597 | 1.0606 |
| NB   | 41 | 0.89809         | 0.10191      | 0.03759      | 0.02819      | 0.000709  | 0.00623 | 1.0719 | 1.0727 |
| MO   | 42 | 0.89811         | 0.10189      | 0.03735      | 0.04052      | 0.000584  | 0.00639 | 1.0841 | 1.0848 |
| ТС   | 43 | 0.89813         | 0.10187      | 0.03711      | 0.05286      | 0.000458  | 0.00654 | 1.0963 | 1.0970 |
| RU   | 44 | 0.89815         | 0.10185      | 0.03687      | 0.06521      | 0.000333  | 0.00670 | 1.1085 | 1.1091 |
| RH   | 45 | 0.89815         | 0.10185      | 0.03698      | 0.07760      | 0.000432  | 0.00683 | 1.1215 | 1.1218 |
| PD   | 46 | 0.89815         | 0.10185      | 0.03708      | 0.08999      | 0.000531  | 0.00697 | 1.1345 | 1.1346 |
| AG   | 47 | 0.89815         | 0.10185      | 0.03718      | 0.10239      | 0.000630  | 0.00710 | 1.1476 | 1.1473 |
| CD   | 48 | 0.89815         | 0.10185      | 0.03728      | 0.11478      | 0.000729  | 0.00724 | 1.1606 | 1.1600 |

# Table 12: L shell emission rates, L3 SubShell, (Scofield, 1974).

| IN | 49 | 0.89823 | 0.10177 | 0.03668 | 0.12337 | 0.000839 | 0.00742 | 1.1695 | 1.1683 |
|----|----|---------|---------|---------|---------|----------|---------|--------|--------|
| SN | 50 | 0.89831 | 0.10169 | 0.03609 | 0.13196 | 0.000952 | 0.00761 | 1.1785 | 1.1766 |
| SB | 51 | 0.89831 | 0.10169 | 0.03660 | 0.13877 | 0.00104  | 0.00781 | 1.1857 | 1.1842 |
| TE | 52 | 0.89831 | 0.10169 | 0.03712 | 0.14557 | 0.00114  | 0.00799 | 1.1930 | 1.1918 |
|    | 53 | 0.89831 | 0.10169 | 0.03764 | 0.15238 | 0.00124  | 0.00819 | 1.2002 | 1.1995 |
| XE | 54 | 0.89831 | 0.10169 | 0.03815 | 0.15918 | 0.00133  | 0.00839 | 1.2074 | 1.2071 |
| CS | 55 | 0.89827 | 0.10173 | 0.03840 | 0.16497 | 0.00146  | 0.00857 | 1.2134 | 1.2134 |
| BA | 56 | 0.89823 | 0.10177 | 0.03864 | 0.17075 | 0.00158  | 0.00876 | 1.2193 | 1.2197 |
| LA | 57 | 0.89823 | 0.10177 | 0.03895 | 0.17206 | 0.00158  | 0.00888 | 1.2211 | 1.2215 |
| CE | 58 | 0.89823 | 0.10177 | 0.03926 | 0.17336 | 0.00159  | 0.00900 | 1.2229 | 1.2232 |
| PR | 59 | 0.89823 | 0.10177 | 0.03957 | 0.17466 | 0.00160  | 0.00913 | 1.2246 | 1.2250 |
| ND | 60 | 0.89823 | 0.10177 | 0.03987 | 0.17596 | 0.00160  | 0.00925 | 1.2264 | 1.2267 |
| PM | 61 | 0.89823 | 0.10177 | 0.04024 | 0.17677 | 0.00161  | 0.00938 | 1.2284 | 1.2280 |
| SM | 62 | 0.89823 | 0.10177 | 0.04062 | 0.17758 | 0.00161  | 0.00949 | 1.2305 | 1.2293 |
| EU | 63 | 0.89821 | 0.10179 | 0.04104 | 0.17809 | 0.00161  | 0.00962 | 1.2317 | 1.2304 |
| GD | 64 | 0.89817 | 0.10183 | 0.04147 | 0.17858 | 0.00162  | 0.00974 | 1.2329 | 1.2314 |
| ТВ | 65 | 0.89815 | 0.10185 | 0.04189 | 0.17909 | 0.00163  | 0.00986 | 1.2341 | 1.2325 |
| DY | 66 | 0.89813 | 0.10187 | 0.04240 | 0.17943 | 0.00163  | 0.01000 | 1.2351 | 1.2335 |
| HO | 67 | 0.89812 | 0.10188 | 0.04291 | 0.17977 | 0.00163  | 0.01013 | 1.2362 | 1.2344 |
| ER | 68 | 0.89810 | 0.10190 | 0.04342 | 0.18011 | 0.00164  | 0.01027 | 1.2372 | 1.2354 |
| ТМ | 69 | 0.89809 | 0.10191 | 0.04393 | 0.18044 | 0.00165  | 0.01041 | 1.2383 | 1.2364 |
| YB | 70 | 0.89807 | 0.10193 | 0.04445 | 0.18078 | 0.00166  | 0.01054 | 1.2393 | 1.2374 |
| LU | 71 | 0.89804 | 0.10196 | 0.04505 | 0.18264 | 0.00174  | 0.01073 | 1.2434 | 1.2402 |
| HF | 72 | 0.89801 | 0.10199 | 0.04565 | 0.18448 | 0.00315  | 0.01093 | 1.2475 | 1.2442 |
| TA | 73 | 0.89799 | 0.10201 | 0.04626 | 0.18633 | 0.00594  | 0.01112 | 1.2515 | 1.2496 |
| W  | 74 | 0.89796 | 0.10204 | 0.04694 | 0.18832 | 0.00874  | 0.01134 | 1.2572 | 1.2553 |
| RE | 75 | 0.89795 | 0.10205 | 0.04762 | 0.19032 | 0.01154  | 0.01157 | 1.2628 | 1.2610 |
| OS | 76 | 0.89792 | 0.10208 | 0.04829 | 0.19232 | 0.01434  | 0.01179 | 1.2685 | 1.2667 |
| IN | 77 | 0.89791 | 0.10209 | 0.04897 | 0.19431 | 0.01713  | 0.01201 | 1.2741 | 1.2724 |
| PT | 78 | 0.89789 | 0.10211 | 0.04973 | 0.19583 | 0.01954  | 0.01226 | 1.2792 | 1.2774 |
| AU | 79 | 0.89788 | 0.10212 | 0.05050 | 0.19735 | 0.02194  | 0.01249 | 1.2843 | 1.2823 |
| HG | 80 | 0.89786 | 0.10214 | 0.05125 | 0.19888 | 0.02433  | 0.01273 | 1.2894 | 1.2872 |
| TL | 81 | 0.89784 | 0.10216 | 0.05201 | 0.20040 | 0.02674  | 0.01296 | 1.2944 | 1.2921 |

| PB | 82 | 0.89783 | 0.10217 | 0.05277 | 0.20192 | 0.02913 | 0.01321 | 1.2995 | 1.2970 |
|----|----|---------|---------|---------|---------|---------|---------|--------|--------|
| BI | 83 | 0.89780 | 0.10220 | 0.05364 | 0.20365 | 0.03120 | 0.01348 | 1.3046 | 1.3020 |
| PO | 84 | 0.89779 | 0.10221 | 0.05450 | 0.20537 | 0.03327 | 0.01375 | 1.3098 | 1.3069 |
| AT | 85 | 0.89776 | 0.10224 | 0.05537 | 0.20709 | 0.03533 | 0.01401 | 1.3149 | 1.3118 |
| HN | 86 | 0.89775 | 0.10225 | 0.05624 | 0.20882 | 0.03740 | 0.01428 | 1.3200 | 1.3167 |
| FR | 87 | 0.89773 | 0.10227 | 0.05721 | 0.21041 | 0.03893 | 0.01457 | 1.3247 | 1.3211 |
| BA | 88 | 0.89772 | 0.10228 | 0.05817 | 0.21202 | 0.04048 | 0.01486 | 1.3294 | 1.3255 |
| AC | 89 | 0.89771 | 0.10229 | 0.05914 | 0.21361 | 0.04201 | 0.01515 | 1.3341 | 1.3299 |
| TH | 90 | 0.89769 | 0.10231 | 0.06011 | 0.21520 | 0.04356 | 0.01544 | 1.3388 | 1.3343 |
| PA | 91 | 0.89768 | 0.10232 | 0.06107 | 0.21681 | 0.04510 | 0.01573 | 1.3435 | 1.3387 |
| U  | 92 | 0.89767 | 0.10233 | 0.06204 | 0.21840 | 0.04663 | 0.01601 | 1.3482 | 1.3431 |
| NP | 93 | 0.89763 | 0.10237 | 0.06309 | 0.21987 | 0.04761 | 0.01633 | 1.3520 | 1.3469 |
| PU | 94 | 0.89759 | 0.10241 | 0.06414 | 0.22134 | 0.04859 | 0.01663 | 1.3558 | 1.3507 |
| AM | 95 | 0.89755 | 0.10245 | 0.06519 | 0.22282 | 0.04956 | 0.01695 | 1.3596 | 1.3545 |
| СМ | 96 | 0.89750 | 0.10250 | 0.06624 | 0.22429 | 0.05054 | 0.01725 | 1.3634 | 1.3583 |

#### 9.2.2 File LsubshellEmissionRatesSalemExpt-15Feb11.txt

The following two tables are stored side by side in the file. Please note that the element name and Z are included in the second tables only in this appendix and not in the original file.

#### Table 13: L shell emission rates, L1 and L2 SubShells, (Salem 1974).

| *Salem et al | *Salem et al Expt L1 subshell emission rates 1979 |       |        |        |        |       |         |        | Salem | n et al Exp | t L2 subs | hell emis | sion rates | s 1979 |
|--------------|---------------------------------------------------|-------|--------|--------|--------|-------|---------|--------|-------|-------------|-----------|-----------|------------|--------|
| *Lβ3=1.00    |                                                   |       |        |        |        |       |         |        | Lβ1=1 | .000        |           |           |            |        |
| *Elt         | Ζ                                                 | Lβ3   | Lβ4    | Lγ2    | Lγ3    | Lγ44' | Lβ910   | Sum    | Lβ1   | Lη          | Lγ1       | Lγ5       | Lγ6        | Sum    |
| MN           | 25                                                | 1.000 | 0.5310 | 0      | 0.1575 | 0     | 0.00075 | 1.6893 | 1.000 | 0.08800     | 0         | 0.003     | 0          | 1.0910 |
| FE           | 26                                                | 1.000 | 0.5340 | 0      | 0.1600 | 0     | 0.00150 | 1.6955 | 1.000 | 0.08400     | 0         | 0.003     | 0          | 1.0870 |
| CO           | 27                                                | 1.000 | 0.5370 | 0      | 0.1625 | 0     | 0.00225 | 1.7018 | 1.000 | 0.08000     | 0         | 0.003     | 0          | 1.0830 |
| NI           | 28                                                | 1.000 | 0.5400 | 0      | 0.1650 | 0     | 0.00300 | 1.7080 | 1.000 | 0.07600     | 0         | 0.003     | 0          | 1.0790 |
| CU           | 29                                                | 1.000 | 0.5430 | 0      | 0.1675 | 0     | 0.00375 | 1.7143 | 1.000 | 0.07200     | 0         | 0.003     | 0          | 1.0750 |
| ZN           | 30                                                | 1.000 | 0.5460 | 0      | 0.1700 | 0     | 0.00450 | 1.7205 | 1.000 | 0.06800     | 0         | 0.003     | 0          | 1.0710 |
| GA           | 31                                                | 1.000 | 0.5485 | 0.0050 | 0.1715 | 0     | 0.00525 | 1.7303 | 1.000 | 0.06540     | 0         | 0.003     | 0          | 1.0684 |

| GE | 32 | 1.000 | 0.5510 | 0.0100 | 0.1730 | 0      | 0.00600 | 1.7400 | 1.000 | 0.06280 | 0       | 0.003  | 0 | 1.0658 |
|----|----|-------|--------|--------|--------|--------|---------|--------|-------|---------|---------|--------|---|--------|
| AS | 33 | 1.000 | 0.5535 | 0.0190 | 0.1765 | 0      | 0.00650 | 1.7555 | 1.000 | 0.06040 | 0       | 0.003  | 0 | 1.0634 |
| SE | 34 | 1.000 | 0.5560 | 0.0280 | 0.1800 | 0      | 0.00700 | 1.7710 | 1.000 | 0.05800 | 0       | 0.003  | 0 | 1.0610 |
| BR | 35 | 1.000 | 0.5590 | 0.0405 | 0.1810 | 0      | 0.00750 | 1.7880 | 1.000 | 0.05575 | 0       | 0.003  | 0 | 1.0588 |
| KR | 36 | 1.000 | 0.5620 | 0.0530 | 0.1820 | 0      | 0.00800 | 1.8050 | 1.000 | 0.05350 | 0       | 0.003  | 0 | 1.0565 |
| RB | 37 | 1.000 | 0.5650 | 0.0625 | 0.1850 | 0      | 0.00900 | 1.8215 | 1.000 | 0.05140 | 0       | 0.004  | 0 | 1.0554 |
| SR | 38 | 1.000 | 0.5680 | 0.0720 | 0.1880 | 0      | 0.01000 | 1.8380 | 1.000 | 0.04930 | 0       | 0.005  | 0 | 1.0543 |
| Υ  | 39 | 1.000 | 0.5710 | 0.0775 | 0.1890 | 0      | 0.01050 | 1.8480 | 1.000 | 0.04765 | 0.01650 | 0.005  | 0 | 1.0692 |
| ZR | 40 | 1.000 | 0.5740 | 0.0830 | 0.1900 | 0      | 0.01100 | 1.8580 | 1.000 | 0.04600 | 0.03300 | 0.005  | 0 | 1.0840 |
| NB | 41 | 1.000 | 0.6400 | 0.0870 | 0.1930 | 0      | 0.01150 | 1.9315 | 1.000 | 0.04450 | 0.04400 | 0.005  | 0 | 1.0935 |
| MO | 42 | 1.000 | 0.7060 | 0.0910 | 0.1960 | 0      | 0.01200 | 2.0050 | 1.000 | 0.04300 | 0.05500 | 0.005  | 0 | 1.1030 |
| TC | 43 | 1.000 | 0.6920 | 0.0965 | 0.1990 | 0      | 0.01300 | 2.0005 | 1.000 | 0.04150 | 0.06415 | 0.005  | 0 | 1.1107 |
| RU | 44 | 1.000 | 0.6780 | 0.1020 | 0.2020 | 0      | 0.01400 | 1.9960 | 1.000 | 0.04000 | 0.07330 | 0.005  | 0 | 1.1183 |
| RH | 45 | 1.000 | 0.6665 | 0.1055 | 0.2040 | 0      | 0.01500 | 1.9910 | 1.000 | 0.03875 | 0.09000 | 0.005  | 0 | 1.1338 |
| PD | 46 | 1.000 | 0.6550 | 0.1090 | 0.2060 | 0      | 0.01600 | 1.9860 | 1.000 | 0.03750 | 0.10670 | 0.005  | 0 | 1.1492 |
| AG | 47 | 1.000 | 0.6450 | 0.1125 | 0.2095 | 0      | 0.01675 | 1.9838 | 1.000 | 0.03650 | 0.10635 | 0.005  | 0 | 1.1479 |
| CD | 48 | 1.000 | 0.6350 | 0.1160 | 0.2130 | 0      | 0.01750 | 1.9815 | 1.000 | 0.03550 | 0.10600 | 0.005  | 0 | 1.1465 |
| IN | 49 | 1.000 | 0.6280 | 0.1205 | 0.2165 | 0.0035 | 0.01825 | 1.9868 | 1.000 | 0.03450 | 0.11200 | 0.0055 | 0 | 1.1520 |
| SN | 50 | 1.000 | 0.6210 | 0.1250 | 0.2200 | 0.0070 | 0.01900 | 1.9920 | 1.000 | 0.03350 | 0.11800 | 0.0060 | 0 | 1.1575 |
| SB | 51 | 1.000 | 0.6140 | 0.1290 | 0.2230 | 0.0140 | 0.02000 | 2.0000 | 1.000 | 0.03275 | 0.12250 | 0.0060 | 0 | 1.1613 |
| TE | 52 | 1.000 | 0.6070 | 0.1330 | 0.2260 | 0.0210 | 0.02100 | 2.0080 | 1.000 | 0.03200 | 0.12700 | 0.0060 | 0 | 1.1650 |
| 1  | 53 | 1.000 | 0.6025 | 0.1365 | 0.2295 | 0.0305 | 0.02250 | 2.0215 | 1.000 | 0.03100 | 0.13350 | 0.0060 | 0 | 1.1705 |
| XE | 54 | 1.000 | 0.5980 | 0.1400 | 0.2330 | 0.0400 | 0.02400 | 2.0350 | 1.000 | 0.03000 | 0.14000 | 0.0060 | 0 | 1.1760 |
| CS | 55 | 1.000 | 0.5965 | 0.1445 | 0.2365 | 0.0475 | 0.02500 | 2.0500 | 1.000 | 0.02925 | 0.14250 | 0.0060 | 0 | 1.1778 |
| BA | 56 | 1.000 | 0.5950 | 0.1490 | 0.2400 | 0.0550 | 0.02600 | 2.0650 | 1.000 | 0.02850 | 0.14500 | 0.0060 | 0 | 1.1795 |
| LA | 57 | 1.000 | 0.5935 | 0.1515 | 0.2430 | 0.0555 | 0.02725 | 2.0708 | 1.000 | 0.02775 | 0.14900 | 0.0060 | 0 | 1.1828 |
| CE | 58 | 1.000 | 0.5920 | 0.1540 | 0.2460 | 0.0560 | 0.02850 | 2.0765 | 1.000 | 0.02700 | 0.15300 | 0.0060 | 0 | 1.1860 |
| PR | 59 | 1.000 | 0.5930 | 0.1565 | 0.2500 | 0.0560 | 0.02975 | 2.0853 | 1.000 | 0.02650 | 0.15650 | 0.0060 | 0 | 1.1890 |
| ND | 60 | 1.000 | 0.5940 | 0.1590 | 0.2540 | 0.0560 | 0.03100 | 2.0940 | 1.000 | 0.02600 | 0.16000 | 0.0060 | 0 | 1.1920 |
| PM | 61 | 1.000 | 0.5970 | 0.1615 | 0.2585 | 0.0560 | 0.03250 | 2.1055 | 1.000 | 0.02525 | 0.16250 | 0.0060 | 0 | 1.1938 |
| SM | 62 | 1.000 | 0.6000 | 0.1640 | 0.2630 | 0.0560 | 0.03400 | 2.1170 | 1.000 | 0.02450 | 0.16500 | 0.0060 | 0 | 1.1955 |
| EU | 63 | 1.000 | 0.6040 | 0.1780 | 0.2665 | 0.0580 | 0.03550 | 2.1420 | 1.000 | 0.02400 | 0.16750 | 0.0060 | 0 | 1.1975 |
| GD | 64 | 1.000 | 0.6080 | 0.1920 | 0.2700 | 0.0600 | 0.03700 | 2.1670 | 1.000 | 0.02350 | 0.17000 | 0.0060 | 0 | 1.1995 |
| ТВ | 65 | 1.000 | 0.6130 | 0.1935 | 0.2750 | 0.0578 | 0.03900 | 2.1783 | 1.000 | 0.02300 | 0.17200 | 0.0060 | 0 | 1.2010 |
| DY | 66 | 1.000 | 0.6180 | 0.1950 | 0.2800 | 0.0556 | 0.04100 | 2.1896 | 1.000 | 0.02250 | 0.17400 | 0.0060 | 0 | 1.2025 |
| НО | 67 | 1.000 | 0.6265 | 0.1965 | 0.2850 | 0.0553 | 0.04300 | 2.2063 | 1.000 | 0.02205 | 0.17600 | 0.0060 | 0 | 1.2041 |

| ER | 68 | 1.000 | 0.6350 | 0.1980 | 0.2900 | 0.0550 | 0.04500 | 2.2230 | 1.000 | 0.02160 | 0.17800 | 0.0060 | 0       | 1.2056 |
|----|----|-------|--------|--------|--------|--------|---------|--------|-------|---------|---------|--------|---------|--------|
| ТМ | 69 | 1.000 | 0.6450 | 0.2025 | 0.2940 | 0.0550 | 0.04700 | 2.2435 | 1.000 | 0.02130 | 0.17985 | 0.0060 | 0       | 1.2072 |
| YB | 70 | 1.000 | 0.6550 | 0.2070 | 0.2980 | 0.0550 | 0.04900 | 2.2640 | 1.000 | 0.02100 | 0.18170 | 0.0060 | 0       | 1.2087 |
| LU | 71 | 1.000 | 0.6665 | 0.2095 | 0.3025 | 0.0585 | 0.05100 | 2.2880 | 1.000 | 0.02090 | 0.18300 | 0.0060 | 0.00100 | 1.2109 |
| HF | 72 | 1.000 | 0.6780 | 0.2120 | 0.3070 | 0.0620 | 0.05300 | 2.3120 | 1.000 | 0.02080 | 0.18430 | 0.0060 | 0.00200 | 1.2131 |
| ТА | 73 | 1.000 | 0.6915 | 0.2150 | 0.3125 | 0.0655 | 0.05550 | 2.3400 | 1.000 | 0.02090 | 0.18615 | 0.0065 | 0.00460 | 1.2182 |
| W  | 74 | 1.000 | 0.7050 | 0.2180 | 0.3180 | 0.0690 | 0.05800 | 2.3680 | 1.000 | 0.02100 | 0.18800 | 0.0070 | 0.00720 | 1.2232 |
| RE | 75 | 1.000 | 0.7185 | 0.2240 | 0.3230 | 0.0730 | 0.06050 | 2.3990 | 1.000 | 0.02110 | 0.19070 | 0.0070 | 0.01185 | 1.2307 |
| OS | 76 | 1.000 | 0.7320 | 0.2300 | 0.3280 | 0.0770 | 0.06300 | 2.4300 | 1.000 | 0.02120 | 0.19340 | 0.0070 | 0.01650 | 1.2381 |
| IN | 77 | 1.000 | 0.7485 | 0.2375 | 0.3330 | 0.0800 | 0.06600 | 2.4650 | 1.000 | 0.02150 | 0.19535 | 0.0070 | 0.02025 | 1.2441 |
| PT | 78 | 1.000 | 0.7650 | 0.2450 | 0.3380 | 0.0830 | 0.06900 | 2.5000 | 1.000 | 0.02180 | 0.19730 | 0.0070 | 0.02400 | 1.2501 |
| AU | 79 | 1.000 | 0.7840 | 0.2540 | 0.3440 | 0.0870 | 0.07250 | 2.5415 | 1.000 | 0.02215 | 0.20040 | 0.0070 | 0.02750 | 1.2571 |
| HG | 80 | 1.000 | 0.8030 | 0.2630 | 0.3500 | 0.0910 | 0.07600 | 2.5830 | 1.000 | 0.02250 | 0.20350 | 0.0070 | 0.03100 | 1.2640 |
| TL | 81 | 1.000 | 0.8225 | 0.2745 | 0.3550 | 0.0955 | 0.07950 | 2.6270 | 1.000 | 0.02275 | 0.20640 | 0.0070 | 0.03375 | 1.2699 |
| PB | 82 | 1.000 | 0.8420 | 0.2860 | 0.3600 | 0.1000 | 0.08300 | 2.6710 | 1.000 | 0.02300 | 0.20930 | 0.0070 | 0.03650 | 1.2758 |
| BI | 83 | 1.000 | 0.8635 | 0.2995 | 0.3660 | 0.1050 | 0.08700 | 2.7210 | 1.000 | 0.02350 | 0.21235 | 0.0070 | 0.03900 | 1.2819 |
| PO | 84 | 1.000 | 0.8850 | 0.3130 | 0.3720 | 0.1100 | 0.09100 | 2.7710 | 1.000 | 0.02400 | 0.21540 | 0.0070 | 0.04150 | 1.2879 |
| AT | 85 | 1.000 | 0.9095 | 0.3275 | 0.3770 | 0.1150 | 0.09500 | 2.8240 | 1.000 | 0.02430 | 0.21870 | 0.0070 | 0.04350 | 1.2935 |
| HN | 86 | 1.000 | 0.9340 | 0.3420 | 0.3820 | 0.1200 | 0.09900 | 2.8770 | 1.000 | 0.02460 | 0.22200 | 0.0070 | 0.04550 | 1.2991 |
| FR | 87 | 1.000 | 0.9615 | 0.3585 | 0.3890 | 0.1255 | 0.10400 | 2.9385 | 1.000 | 0.02480 | 0.22535 | 0.0070 | 0.04710 | 1.3043 |
| BA | 88 | 1.000 | 0.9890 | 0.3750 | 0.3960 | 0.1310 | 0.10900 | 3.0000 | 1.000 | 0.02500 | 0.22870 | 0.0070 | 0.04870 | 1.3094 |
| AC | 89 | 1.000 | 1.0170 | 0.3935 | 0.4030 | 0.1365 | 0.11450 | 3.0645 | 1.000 | 0.02550 | 0.23150 | 0.0075 | 0.04945 | 1.3140 |
| TH | 90 | 1.000 | 1.0450 | 0.4120 | 0.4100 | 0.1420 | 0.12000 | 3.1290 | 1.000 | 0.02600 | 0.23430 | 0.0080 | 0.05020 | 1.3185 |
| PA | 91 | 1.000 | 1.0735 | 0.4310 | 0.4180 | 0.1470 | 0.12600 | 3.1955 | 1.000 | 0.02625 | 0.23765 | 0.0080 | 0.05070 | 1.3226 |
| U  | 92 | 1.000 | 1.1020 | 0.4500 | 0.4260 | 0.1520 | 0.13200 | 3.2620 | 1.000 | 0.02650 | 0.24100 | 0.0080 | 0.05120 | 1.3267 |
| NP | 93 | 1.000 | 1.1320 | 0.4725 | 0.4330 | 0.1570 | 0.13950 | 3.3340 | 1.000 | 0.02675 | 0.24250 | 0.0080 | 0.05140 | 1.3287 |
| PU | 94 | 1.000 | 1.1620 | 0.4950 | 0.4400 | 0.1620 | 0.14700 | 3.4060 | 1.000 | 0.02700 | 0.24400 | 0.0080 | 0.05160 | 1.3306 |
| AM | 95 | 1.000 | 1.1960 | 0.5260 | 0.4485 | 0.1680 | 0.15600 | 3.4945 | 1.000 | 0.02725 | 0.24735 | 0.0080 | 0.05180 | 1.3344 |
| СМ | 96 | 1.000 | 1.2300 | 0.5570 | 0.4570 | 0.1740 | 0.16500 | 3.5830 | 1.000 | 0.02750 | 0.25070 | 0.0080 | 0.05200 | 1.3382 |

|      |    | Salem e | t al Expt L | 3 subshell | emission | rates 1979 |         |        |
|------|----|---------|-------------|------------|----------|------------|---------|--------|
| _    |    | Lα(1+2) | =1.000      |            |          |            |         |        |
| *Elt | Ζ  | La1     | Lα2         | LI         | Lβ215    | Lβ5        | Lβ6     | Sum    |
| MN   | 25 | 0.9001  | 0.0999      | 0.10225    | 0        | 0          | 0.00360 | 1.1059 |
| FE   | 26 | 0.9001  | 0.0999      | 0.09500    | 0        | 0          | 0.00360 | 1.0986 |
| CO   | 27 | 0.9001  | 0.0999      | 0.08775    | 0        | 0          | 0.00360 | 1.0914 |
| NI   | 28 | 0.9001  | 0.0999      | 0.08050    | 0        | 0          | 0.00360 | 1.0841 |
| CU   | 29 | 0.9001  | 0.0999      | 0.07325    | 0        | 0          | 0.00360 | 1.0769 |
| ZN   | 30 | 0.9001  | 0.0999      | 0.06600    | 0        | 0          | 0.00360 | 1.0696 |
| GA   | 31 | 0.9001  | 0.0999      | 0.06200    | 0        | 0          | 0.00360 | 1.0656 |
| GE   | 32 | 0.9001  | 0.0999      | 0.05800    | 0        | 0          | 0.00360 | 1.0616 |
| AS   | 33 | 0.9001  | 0.0999      | 0.05490    | 0        | 0          | 0.00360 | 1.0585 |
| SE   | 34 | 0.9001  | 0.0999      | 0.05180    | 0        | 0          | 0.00360 | 1.0554 |
| BR   | 35 | 0.9001  | 0.0999      | 0.04965    | 0        | 0          | 0.00360 | 1.0533 |
| KR   | 36 | 0.9001  | 0.0999      | 0.04750    | 0        | 0          | 0.00360 | 1.0511 |
| RB   | 37 | 0.9001  | 0.0999      | 0.04590    | 0        | 0          | 0.00360 | 1.0495 |
| SR   | 38 | 0.9001  | 0.0999      | 0.04430    | 0        | 0          | 0.00360 | 1.0479 |
| Y    | 39 | 0.9001  | 0.0999      | 0.04315    | 0.00315  | 0          | 0.00495 | 1.0513 |
| ZR   | 40 | 0.9001  | 0.0999      | 0.04200    | 0.00630  | 0          | 0.00630 | 1.0546 |
| NB   | 41 | 0.9001  | 0.0999      | 0.04100    | 0.02642  | 0          | 0.00630 | 1.0737 |
| МО   | 42 | 0.9001  | 0.0999      | 0.04000    | 0.04653  | 0          | 0.00630 | 1.0928 |
| TC   | 43 | 0.9000  | 0.1000      | 0.03925    | 0.06511  | 0          | 0.00630 | 1.1107 |
| RU   | 44 | 0.8999  | 0.1001      | 0.03850    | 0.08369  | 0          | 0.00630 | 1.1285 |
| RH   | 45 | 0.8999  | 0.1001      | 0.03775    | 0.09494  | 0          | 0.00630 | 1.1390 |
| PD   | 46 | 0.8999  | 0.1001      | 0.03700    | 0.1062   | 0          | 0.00630 | 1.1495 |
| AG   | 47 | 0.8999  | 0.1001      | 0.03680    | 0.1176   | 0          | 0.00630 | 1.1607 |
| CD   | 48 | 0.8999  | 0.1001      | 0.03660    | 0.1290   | 0          | 0.00630 | 1.1719 |
| IN   | 49 | 0.8999  | 0.1001      | 0.03630    | 0.1365   | 0          | 0.00675 | 1.1795 |
| SN   | 50 | 0.8999  | 0.1002      | 0.03600    | 0.1440   | 0          | 0.00720 | 1.1872 |
| SB   | 51 | 0.8999  | 0.1002      | 0.03600    | 0.1530   | 0          | 0.00720 | 1.1962 |
| TE   | 52 | 0.8999  | 0.1002      | 0.03600    | 0.1620   | 0          | 0.00720 | 1.2052 |
| Ι    | 53 | 0.8999  | 0.1002      | 0.03600    | 0.1683   | 0          | 0.00720 | 1.2115 |
| XE   | 54 | 0.8999  | 0.1002      | 0.03600    | 0.1746   | 0          | 0.00720 | 1.2178 |
| CS   | 55 | 0.8999  | 0.1002      | 0.03610    | 0.1803   | 0          | 0.00720 | 1.2236 |
| BA   | 56 | 0.8999  | 0.1002      | 0.03620    | 0.1860   | 0          | 0.00720 | 1.2294 |
| LA   | 57 | 0.8998  | 0.1002      | 0.03650    | 0.1875   | 0          | 0.00720 | 1.2312 |
| CE   | 58 | 0.8998  | 0.1002      | 0.03680    | 0.1890   | 0          | 0.00720 | 1.2330 |
| PR   | 59 | 0.8998  | 0.1002      | 0.03700    | 0.1904   | 0          | 0.00754 | 1.2350 |
| ND   | 60 | 0.8998  | 0.1002      | 0.03720    | 0.1919   | 0          | 0.00787 | 1.2370 |
| PM   | 61 | 0.8998  | 0.1002      | 0.03730    | 0.1908   | 0          | 0.00810 | 1.2362 |
| SM   | 62 | 0.8998  | 0.1002      | 0.03740    | 0.1896   | 0          | 0.00832 | 1.2353 |
| EU   | 63 | 0.8998  | 0.1002      | 0.03760    | 0.1885   | 0          | 0.00862 | 1.2347 |
| GD   | 64 | 0.8998  | 0.1002      | 0.03780    | 0.1874   | 0          | 0.00891 | 1.2341 |
| ТВ   | 65 | 0.8998  | 0.1002      | 0.03805    | 0.1859   | 0          | 0.00918 | 1.2332 |
| DY   | 66 | 0.8998  | 0.1002      | 0.03830    | 0.1845   | 0          | 0.00945 | 1.2322 |
| НО   | 67 | 0.8997  | 0.1003      | 0.03865    | 0.1824   | 0          | 0.00976 | 1.2308 |
| ER   | 68 | 0.8997  | 0.1003      | 0.03900    | 0.1803   | 0          | 0.01008 | 1.2294 |
| ТМ   | 69 | 0.8997  | 0.1003      | 0.03960    | 0.1774   | 0          | 0.01030 | 1.2273 |

Table 14: L shell emission rates, L3 SubShell, (Salem 1974).

| YB | 70 | 0.8997 | 0.1003 | 0.04020 | 0.1745 | 0       | 0.01053 | 1.2253 |
|----|----|--------|--------|---------|--------|---------|---------|--------|
| LU | 71 | 0.8997 | 0.1003 | 0.04075 | 0.1832 | 0.00135 | 0.01071 | 1.2360 |
| HF | 72 | 0.8997 | 0.1003 | 0.04130 | 0.1919 | 0.00270 | 0.01089 | 1.2468 |
| TA | 73 | 0.8996 | 0.1004 | 0.04205 | 0.1982 | 0.00360 | 0.01107 | 1.2550 |
| W  | 74 | 0.8996 | 0.1004 | 0.04280 | 0.2046 | 0.00450 | 0.01125 | 1.2631 |
| RE | 75 | 0.8996 | 0.1004 | 0.04365 | 0.2075 | 0.00819 | 0.01178 | 1.2712 |
| OS | 76 | 0.8996 | 0.1004 | 0.04450 | 0.2105 | 0.01187 | 0.01232 | 1.2792 |
| IN | 77 | 0.8996 | 0.1004 | 0.04535 | 0.2132 | 0.01484 | 0.01259 | 1.2860 |
| PT | 78 | 0.8995 | 0.1005 | 0.04620 | 0.2159 | 0.01781 | 0.01286 | 1.2928 |
| AU | 79 | 0.8995 | 0.1005 | 0.04725 | 0.2181 | 0.02069 | 0.01318 | 1.2993 |
| HG | 80 | 0.8995 | 0.1005 | 0.04830 | 0.2204 | 0.02357 | 0.01349 | 1.3057 |
| TL | 81 | 0.8995 | 0.1005 | 0.04925 | 0.2219 | 0.02622 | 0.01376 | 1.3111 |
| PB | 82 | 0.8995 | 0.1005 | 0.05020 | 0.2234 | 0.02887 | 0.01403 | 1.3165 |
| BI | 83 | 0.8995 | 0.1005 | 0.05120 | 0.2247 | 0.03121 | 0.01430 | 1.3214 |
| PO | 84 | 0.8995 | 0.1005 | 0.05220 | 0.2261 | 0.03355 | 0.01457 | 1.3264 |
| AT | 85 | 0.8995 | 0.1005 | 0.05310 | 0.2282 | 0.03589 | 0.01484 | 1.3320 |
| HN | 86 | 0.8994 | 0.1006 | 0.05400 | 0.2303 | 0.03823 | 0.01511 | 1.3376 |
| FR | 87 | 0.8994 | 0.1006 | 0.05515 | 0.2317 | 0.04038 | 0.01547 | 1.3427 |
| BA | 88 | 0.8994 | 0.1006 | 0.05630 | 0.2331 | 0.04254 | 0.01583 | 1.3478 |
| AC | 89 | 0.8994 | 0.1006 | 0.05755 | 0.2343 | 0.04457 | 0.01610 | 1.3525 |
| TH | 90 | 0.8994 | 0.1006 | 0.05880 | 0.2354 | 0.04659 | 0.01637 | 1.3571 |
| PA | 91 | 0.8994 | 0.1006 | 0.05995 | 0.2364 | 0.04839 | 0.01668 | 1.3614 |
| U  | 92 | 0.8994 | 0.1006 | 0.06110 | 0.2375 | 0.05019 | 0.01700 | 1.3657 |
| NP | 93 | 0.8994 | 0.1006 | 0.06205 | 0.2387 | 0.05172 | 0.01727 | 1.3697 |
| PU | 94 | 0.8994 | 0.1006 | 0.06300 | 0.2399 | 0.05325 | 0.01754 | 1.3737 |
| AM | 95 | 0.8994 | 0.1006 | 0.06450 | 0.2411 | 0.05478 | 0.01781 | 1.3781 |
| СМ | 96 | 0.8994 | 0.1006 | 0.06600 | 0.2422 | 0.05631 | 0.01808 | 1.3826 |

#### 9.3 L shell fluorescence yield and Coster-Kronig probabilities

The L shell fluorescence yield and Coster-Kronig probabilities for the two options (Krause 1979, Campbell 2003, 2009) are stored in file

## LsubshellwLfijCampbelKrauseat15Feb11.txt

and the Krause k'<sub>1,3</sub> Coster-Kronig probabilities are stored in file

Krause\_kd13.txt.

| *L S | hell ( | Campbell Re | commend | led value | s from 2003 a | and 2009 refe | erences | L Shell Kra |        |        |        |        |         |
|------|--------|-------------|---------|-----------|---------------|---------------|---------|-------------|--------|--------|--------|--------|---------|
|      |        |             |         |           |               |               |         | ω1          | ω2     | ω3     | f12    | f13    | f23     |
| *Elt | Ζ      | ω1Rec       | ω2Rec   | ω3Rec     | f12Rec        | f13Rec        | f23Rec  | Krause      | Krause | Krause | Krause | Krause | Krause  |
| MN   | 25     | 0.000410    | 0.0034  | 0.0039    | 0.2265        | 0.5180        | 0       | 0.00084     | 0.0050 | 0.0050 | 0.300  | 0.580  | 0       |
| FE   | 26     | 0.000472    | 0.0048  | 0.0054    | 0.2299        | 0.5150        | 0       | 0.00100     | 0.0063 | 0.0063 | 0.300  | 0.570  | 0       |
| CO   | 27     | 0.000546    | 0.0063  | 0.0071    | 0.2324        | 0.5127        | 0       | 0.00120     | 0.0077 | 0.0077 | 0.300  | 0.560  | 0       |
| NI   | 28     | 0.000608    | 0.0079  | 0.0088    | 0.2358        | 0.5089        | 0       | 0.00140     | 0.0086 | 0.0093 | 0.300  | 0.550  | 0.02800 |
| CU   | 29     | 0.000658    | 0.0096  | 0.0106    | 0.2383        | 0.5059        | 0       | 0.00160     | 0.0100 | 0.0110 | 0.300  | 0.540  | 0.02800 |
| ZN   | 30     | 0.000707    | 0.0104  | 0.0101    | 0.2400        | 0.5014        | 0.0237  | 0.00180     | 0.0110 | 0.0120 | 0.290  | 0.540  | 0.02600 |
| GA   | 31     | 0.001105    | 0.0122  | 0.0118    | 0.1732        | 0.5466        | 0.0220  | 0.00210     | 0.0120 | 0.0130 | 0.290  | 0.530  | 0.03200 |
| GE   | 32     | 0.001303    | 0.0142  | 0.0136    | 0.1682        | 0.5473        | 0.0212  | 0.00240     | 0.0130 | 0.0150 | 0.280  | 0.530  | 0.05000 |
| AS   | 33     | 0.001527    | 0.0162  | 0.0155    | 0.1640        | 0.5481        | 0.0203  | 0.00280     | 0.0140 | 0.0160 | 0.280  | 0.530  | 0.06300 |
| SE   | 34     | 0.001800    | 0.0184  | 0.0175    | 0.1597        | 0.5488        | 0.0203  | 0.00320     | 0.0160 | 0.0180 | 0.280  | 0.520  | 0.07600 |
| BR   | 35     | 0.002048    | 0.0206  | 0.0194    | 0.1597        | 0.5458        | 0.0195  | 0.00360     | 0.0180 | 0.0200 | 0.280  | 0.520  | 0.08800 |
| KR   | 36     | 0.002619    | 0.0199  | 0.0202    | 0.1673        | 0.5300        | 0.0730  | 0.00410     | 0.0200 | 0.0220 | 0.270  | 0.520  | 0.10000 |
| RB   | 37     | 0.004220    | 0.0223  | 0.0226    | 0.1166        | 0.5421        | 0.0800  | 0.00460     | 0.0220 | 0.0240 | 0.270  | 0.520  | 0.10900 |
| SR   | 38     | 0.005089    | 0.0248  | 0.0251    | 0.0955        | 0.5549        | 0.0870  | 0.00510     | 0.0240 | 0.0260 | 0.270  | 0.520  | 0.11700 |
| Y    | 39     | 0.005834    | 0.0276  | 0.0279    | 0.0811        | 0.5200        | 0.0940  | 0.00590     | 0.0260 | 0.0280 | 0.260  | 0.520  | 0.12600 |
| ZR   | 40     | 0.006578    | 0.0292  | 0.0304    | 0.0744        | 0.5200        | 0.1000  | 0.00680     | 0.0280 | 0.0310 | 0.260  | 0.520  | 0.13200 |
| NB   | 41     | 0.007571    | 0.0325  | 0.0339    | 0.0465        | 0.6100        | 0.1060  | 0.00940     | 0.0310 | 0.0340 | 0.100  | 0.610  | 0.13700 |
| MO   | 42     | 0.008440    | 0.0360  | 0.0375    | 0.0473        | 0.6100        | 0.1120  | 0.01000     | 0.0340 | 0.0370 | 0.100  | 0.610  | 0.14100 |

#### Table 15: L shell fluorescence yield and Coster-Kronig probabilities.

| TC | 43 | 0.009433 | 0.0396 | 0.0410 | 0.0482 | 0.6100 | 0.1180 | 0.01100 | 0.0370 | 0.0400 | 0.100 | 0.610 | 0.14400 |
|----|----|----------|--------|--------|--------|--------|--------|---------|--------|--------|-------|-------|---------|
| RU | 44 | 0.01030  | 0.0430 | 0.0450 | 0.0482 | 0.6100 | 0.1240 | 0.01200 | 0.0400 | 0.0430 | 0.100 | 0.610 | 0.14800 |
| RH | 45 | 0.01105  | 0.0450 | 0.0470 | 0.0524 | 0.6000 | 0.1300 | 0.01300 | 0.0430 | 0.0460 | 0.100 | 0.600 | 0.15000 |
| PD | 46 | 0.01229  | 0.0500 | 0.0520 | 0.0549 | 0.6000 | 0.1380 | 0.01400 | 0.0470 | 0.0490 | 0.100 | 0.600 | 0.15100 |
| AG | 47 | 0.01378  | 0.0540 | 0.0560 | 0.0575 | 0.5900 | 0.1410 | 0.01600 | 0.0510 | 0.0520 | 0.100 | 0.590 | 0.15300 |
| CD | 48 | 0.01514  | 0.0590 | 0.0600 | 0.0600 | 0.5900 | 0.1430 | 0.01800 | 0.0560 | 0.0560 | 0.100 | 0.590 | 0.15500 |
| IN | 49 | 0.01663  | 0.0640 | 0.0650 | 0.0625 | 0.5900 | 0.1460 | 0.02000 | 0.0610 | 0.0600 | 0.100 | 0.590 | 0.15700 |
| SN | 50 | 0.04419  | 0.0680 | 0.0700 | 0.1589 | 0.2700 | 0.1480 | 0.03700 | 0.0650 | 0.0640 | 0.170 | 0.270 | 0.15700 |
| SB | 51 | 0.04741  | 0.0730 | 0.0750 | 0.1606 | 0.2800 | 0.1510 | 0.03900 | 0.0690 | 0.0690 | 0.170 | 0.280 | 0.15600 |
| TE | 52 | 0.05089  | 0.0780 | 0.0810 | 0.1631 | 0.2800 | 0.1530 | 0.04100 | 0.0740 | 0.0740 | 0.180 | 0.280 | 0.15500 |
| Ι  | 53 | 0.05337  | 0.0840 | 0.0860 | 0.1648 | 0.2800 | 0.1560 | 0.04400 | 0.0790 | 0.0790 | 0.180 | 0.280 | 0.15400 |
| XE | 54 | 0.05710  | 0.0900 | 0.0920 | 0.1665 | 0.2800 | 0.1590 | 0.04600 | 0.0830 | 0.0850 | 0.190 | 0.280 | 0.15400 |
| CS | 55 | 0.06082  | 0.0970 | 0.0980 | 0.1682 | 0.2800 | 0.1590 | 0.04900 | 0.0900 | 0.0910 | 0.190 | 0.280 | 0.15400 |
| BA | 56 | 0.06578  | 0.1030 | 0.1040 | 0.1699 | 0.2800 | 0.1590 | 0.05200 | 0.0960 | 0.0970 | 0.190 | 0.280 | 0.15300 |
| LA | 57 | 0.07075  | 0.1110 | 0.1120 | 0.1699 | 0.2900 | 0.1590 | 0.05500 | 0.1030 | 0.1040 | 0.190 | 0.290 | 0.15300 |
| CE | 58 | 0.07571  | 0.1190 | 0.1190 | 0.1699 | 0.2900 | 0.1580 | 0.05800 | 0.1100 | 0.1110 | 0.190 | 0.290 | 0.15300 |
| PR | 59 | 0.08068  | 0.1280 | 0.1260 | 0.1699 | 0.2900 | 0.1580 | 0.06100 | 0.1170 | 0.1180 | 0.190 | 0.290 | 0.15300 |
| ND | 60 | 0.08316  | 0.1360 | 0.1340 | 0.1775 | 0.2500 | 0.1580 | 0.06400 | 0.1240 | 0.1250 | 0.190 | 0.300 | 0.15200 |
| PM | 61 | 0.08813  | 0.1450 | 0.1420 | 0.1783 | 0.2500 | 0.1560 | 0.06600 | 0.1320 | 0.1320 | 0.190 | 0.300 | 0.15100 |
| SM | 62 | 0.09309  | 0.1550 | 0.1500 | 0.1792 | 0.2500 | 0.1540 | 0.07100 | 0.1400 | 0.1390 | 0.190 | 0.300 | 0.15000 |
| EU | 63 | 0.09681  | 0.1640 | 0.1580 | 0.1817 | 0.2500 | 0.1520 | 0.07500 | 0.1490 | 0.1470 | 0.190 | 0.300 | 0.14900 |
| GD | 64 | 0.10200  | 0.1750 | 0.1670 | 0.1900 | 0.2790 | 0.1500 | 0.07900 | 0.1580 | 0.1550 | 0.190 | 0.300 | 0.14700 |
| TB | 65 | 0.10700  | 0.1860 | 0.1750 | 0.1820 | 0.2850 | 0.1480 | 0.08300 | 0.1860 | 0.1640 | 0.190 | 0.300 | 0.14500 |
| DY | 66 | 0.11100  | 0.1970 | 0.1840 | 0.1740 | 0.2900 | 0.1460 | 0.08900 | 0.1780 | 0.1740 | 0.190 | 0.300 | 0.14300 |
| HO | 67 | 0.11600  | 0.2080 | 0.1930 | 0.1660 | 0.2960 | 0.1440 | 0.09400 | 0.1890 | 0.1820 | 0.190 | 0.300 | 0.14200 |
| ER | 68 | 0.12100  | 0.2190 | 0.2030 | 0.1580 | 0.3010 | 0.1430 | 0.10000 | 0.2000 | 0.1920 | 0.190 | 0.300 | 0.14000 |
| ТМ | 69 | 0.13100  | 0.2310 | 0.2120 | 0.1500 | 0.3060 | 0.1410 | 0.10600 | 0.2110 | 0.2010 | 0.190 | 0.290 | 0.13900 |
| YB | 70 | 0.13400  | 0.2430 | 0.2220 | 0.1420 | 0.3120 | 0.1400 | 0.11200 | 0.2220 | 0.2100 | 0.190 | 0.290 | 0.13800 |
| LU | 71 | 0.13800  | 0.2560 | 0.2310 | 0.1340 | 0.3170 | 0.1380 | 0.12000 | 0.2340 | 0.2200 | 0.190 | 0.280 | 0.13600 |
| HF | 72 | 0.14100  | 0.2680 | 0.2410 | 0.1260 | 0.3220 | 0.1360 | 0.12800 | 0.2460 | 0.2310 | 0.180 | 0.280 | 0.13500 |
| TA | 73 | 0.14400  | 0.2800 | 0.2510 | 0.1180 | 0.3280 | 0.1340 | 0.13700 | 0.2580 | 0.2430 | 0.180 | 0.280 | 0.13400 |
| W  | 74 | 0.14800  | 0.2910 | 0.2610 | 0.1100 | 0.3330 | 0.1320 | 0.14700 | 0.2700 | 0.2550 | 0.170 | 0.280 | 0.13300 |
| RE | 75 | 0.14700  | 0.3040 | 0.2710 | 0.0760 | 0.4820 | 0.1310 | 0.14400 | 0.2830 | 0.2680 | 0.160 | 0.330 | 0.13000 |
| OS | 76 | 0.14600  | 0.3180 | 0.2820 | 0.0760 | 0.4820 | 0.1300 | 0.13000 | 0.2950 | 0.2810 | 0.160 | 0.390 | 0.12800 |
| IN | 77 | 0.14500  | 0.3310 | 0.2920 | 0.0760 | 0.4820 | 0.1280 | 0.12000 | 0.3080 | 0.2940 | 0.150 | 0.450 | 0.12600 |
| PT | 78 | 0.11400  | 0.3440 | 0.3030 | 0.0750 | 0.5450 | 0.1260 | 0.11400 | 0.3210 | 0.3060 | 0.140 | 0.500 | 0.12400 |

| AU | 79 | 0.11700 | 0.3580 | 0.3130 | 0.0740 | 0.6150 | 0.1250 | 0.10700 | 0.3340 | 0.3200 | 0.140 | 0.530 | 0.12200 |
|----|----|---------|--------|--------|--------|--------|--------|---------|--------|--------|-------|-------|---------|
| HG | 80 | 0.12100 | 0.3700 | 0.3220 | 0.0720 | 0.6150 | 0.1230 | 0.10700 | 0.3470 | 0.3330 | 0.130 | 0.560 | 0.12000 |
| TL | 81 | 0.12400 | 0.3840 | 0.3320 | 0.0690 | 0.6150 | 0.1210 | 0.10700 | 0.3600 | 0.3470 | 0.130 | 0.570 | 0.11800 |
| PB | 82 | 0.12800 | 0.3970 | 0.3430 | 0.0660 | 0.6200 | 0.1190 | 0.11200 | 0.3730 | 0.3600 | 0.120 | 0.580 | 0.11600 |
| BI | 83 | 0.13200 | 0.4110 | 0.3530 | 0.0630 | 0.6200 | 0.1170 | 0.11700 | 0.3870 | 0.3730 | 0.110 | 0.580 | 0.11300 |
| PO | 84 | 0.13500 | 0.4240 | 0.3630 | 0.0600 | 0.6200 | 0.1150 | 0.12200 | 0.4010 | 0.3860 | 0.110 | 0.580 | 0.11100 |
| AT | 85 | 0.13800 | 0.4380 | 0.3740 | 0.0570 | 0.6200 | 0.1130 | 0.12800 | 0.4150 | 0.3990 | 0.100 | 0.590 | 0.11100 |
| HN | 86 | 0.14200 | 0.4510 | 0.3840 | 0.0530 | 0.6200 | 0.1110 | 0.13400 | 0.4290 | 0.4110 | 0.100 | 0.580 | 0.11000 |
| FR | 87 | 0.14600 | 0.4640 | 0.3940 | 0.0500 | 0.6200 | 0.1090 | 0.13900 | 0.4430 | 0.4240 | 0.100 | 0.580 | 0.10900 |
| BA | 88 | 0.15000 | 0.4760 | 0.4040 | 0.0470 | 0.6200 | 0.1070 | 0.14600 | 0.4560 | 0.4370 | 0.090 | 0.580 | 0.10800 |
| AC | 89 | 0.15400 | 0.4900 | 0.4140 | 0.0440 | 0.6200 | 0.1050 | 0.15300 | 0.4680 | 0.4500 | 0.090 | 0.580 | 0.10800 |
| TH | 90 | 0.15900 | 0.5030 | 0.4240 | 0.0400 | 0.6200 | 0.1030 | 0.16100 | 0.4790 | 0.4630 | 0.090 | 0.570 | 0.10800 |
| PA | 91 | 0.16400 | 0.4950 | 0.4340 | 0.0380 | 0.6200 | 0.1410 | 0.16200 | 0.4720 | 0.4760 | 0.080 | 0.580 | 0.13900 |
| U  | 92 | 0.16800 | 0.5060 | 0.4440 | 0.0350 | 0.6200 | 0.1400 | 0.17600 | 0.4670 | 0.4890 | 0.080 | 0.570 | 0.16700 |
| NP | 93 | 0.20000 | 0.5190 | 0.4540 | 0.0300 | 0.6700 | 0.1360 | 0.18700 | 0.4660 | 0.5020 | 0.070 | 0.570 | 0.19200 |
| PU | 94 | 0.21000 | 0.4730 | 0.4630 | 0.0300 | 0.6800 | 0.2300 | 0.20500 | 0.4640 | 0.5140 | 0.050 | 0.560 | 0.19800 |
| AM | 95 | 0.22000 | 0.4870 | 0.4730 | 0.0300 | 0.6800 | 0.2220 | 0.21800 | 0.4710 | 0.5260 | 0.050 | 0.550 | 0.20300 |
| CM | 96 | 0.23000 | 0.5010 | 0.4820 | 0.0300 | 0.6800 | 0.2140 | 0.22800 | 0.4790 | 0.5390 | 0.040 | 0.550 | 0.20000 |

## Table 16: L shell Krause f'<sub>1,3</sub> Coster-Kronig probabilities.

| Flor |                      | Krause   |
|------|----------------------|----------|
| Eler | nent                 | t'13     |
| MG   | 12                   | 2.00E-05 |
| AL   | 13                   | 1.60E-05 |
| SI   | 14                   | 1.40E-05 |
| Р    | 15                   | 1.20E-05 |
| SI   | 16                   | 1.40E-05 |
| CL   | 17                   | 1.40E-05 |
| AR   | 18                   | 1.30E-05 |
| K    | 19                   | 1.20E-05 |
| CA   | 20                   | 1.40E-05 |
| SC   | 21                   | 1.40E-05 |
| TI   | 22                   | 1.50E-05 |
| V    | 23                   | 1.60E-05 |
| CR   | 24                   | 1.80E-05 |
| MN   | 25                   | 1.90E-05 |
| FE   | 26                   | 2.10E-05 |
| CO   | 27                   | 2.30E-05 |
| NI   | 28                   | 2.40E-05 |
| CU   | 29                   | 2.60E-05 |
| ZN   | 30                   | 2.80E-05 |
| GA   | 31                   | 3.00E-05 |
| GE   | 32                   | 3.20E-05 |
| AS   | 33                   | 3.40E-05 |
| SE   | 34                   | 3.60E-05 |
| BR   | 35                   | 3.80E-05 |
| KR   | 36                   | 4.10E-05 |
| RB   | 37                   | 4.40E-05 |
| SR   | 38                   | 4.70E-05 |
| Y    | 39                   | 5.20E-05 |
| ZR   | 40                   | 5.80E-05 |
| NB   | 41                   | 7.80E-05 |
| MO   | 42                   | 8.10E-05 |
| TC   | 43                   | 8.80E-05 |
| RU   | 44                   | 9.60E-05 |
| RH   | 45                   | 1 00E-04 |
| PD   | 46                   | 1 10F-04 |
| AG   | 47                   |          |
| CD   | 48                   |          |
|      | <u>40</u>            |          |
| SN   | <del>- 3</del><br>50 | 3.00E-04 |
| SR   | 50                   | 3 20E-04 |
|      | 51                   | 3 405 04 |
|      | 52                   | 3 70E 04 |
| YE   | 55                   | 3.70E-04 |
|      | 54                   |          |
|      | 55                   | 4.30E-04 |
| BA   | 56                   | 4.70E-04 |

| LA | 57  | 5.10E-04 |
|----|-----|----------|
| CE | 58  | 5.50E-04 |
| PR | 59  | 6.00E-04 |
| ND | 60  | 6.60E-04 |
| PM | 61  | 7.20E-04 |
| SM | 62  | 7.90E-04 |
| EU | 63  | 8.70E-04 |
| GD | 64  | 9.60E-04 |
| TB | 65  | 1.10E-03 |
| DY | 66  | 1.20E-03 |
| НО | 67  | 1.30E-03 |
| ER | 68  | 1.40E-03 |
| ТМ | 69  | 1.60E-03 |
| YB | 70  | 1.80E-03 |
| LU | 71  | 2.00E-03 |
| HF | 72  | 2.30E-03 |
| ТА | 73  | 2.60E-03 |
| W  | 74  | 2.80E-03 |
| RE | 75  | 3.00E-03 |
| OS | 76  | 2.90E-03 |
| IN | 77  | 2.80E-03 |
| PT | 78  | 2.80E-03 |
| AU | 79  | 2.80E-03 |
| HG | 80  | 3.00E-03 |
| TL | 81  | 3.20E-03 |
| PB | 82  | 3.50E-03 |
| BI | 83  | 3.80E-03 |
| PO | 84  | 4.20E-03 |
| AT | 85  | 4.70E-03 |
| RN | 86  | 5.20E-03 |
| FR | 87  | 5.80E-03 |
| RA | 88  | 6.40E-03 |
| AC | 89  | 7.10E-03 |
| TH | 90  | 7.80E-03 |
| PA | 91  | 8.40E-03 |
| U  | 92  | 9.70E-03 |
| NP | 93  | 1.10E-02 |
| PU | 94  | 1.30E-02 |
| AM | 95  | 1.40E-02 |
| CM | 96  | 1.60E-02 |
| BK | 97  | 1.70E-02 |
| CP | 98  | 1.90E-02 |
| ES | 99  | 2.10E-02 |
| FM | 100 | 2.30E-02 |
| MD | 101 | 2.60E-02 |
| NO | 102 | 2.80E-02 |
| LR | 103 | 3.00E-02 |

## 9.4 L shell total fluorescence yield

The L shell total fluorescence yield from Puri et al. (1993), Clayton (1986) and Bambynek et al. (1972) are stored in file

#### LtotalwLbarPuriEJCBambynekat23Feb11.txt.

# Table 17: L shell total fluorescence yield.

| *"ωLbar data from Puri et al. 1993, EJC<br>DSET4 and Bambynek Expt 1972" |          |         |            |  |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------|----------|---------|------------|--|--|--|--|--|--|--|--|
| *Z                                                                       | ωLPuri93 | ωLEJC   | BambynekωL |  |  |  |  |  |  |  |  |
| 25                                                                       | 0.00372  | 0.00703 | 0.00369    |  |  |  |  |  |  |  |  |
| 26                                                                       | 0.00531  | 0.00786 | 0.00476    |  |  |  |  |  |  |  |  |
| 27                                                                       | 0.00690  | 0.00876 | 0.00602    |  |  |  |  |  |  |  |  |
| 28                                                                       | 0.00848  | 0.00975 | 0.00748    |  |  |  |  |  |  |  |  |
| 29                                                                       | 0.01007  | 0.01082 | 0.00913    |  |  |  |  |  |  |  |  |
| 30                                                                       | 0.01025  | 0.01199 | 0.01099    |  |  |  |  |  |  |  |  |
| 31                                                                       | 0.01218  | 0.01326 | 0.01306    |  |  |  |  |  |  |  |  |
| 32                                                                       | 0.01410  | 0.01464 | 0.01535    |  |  |  |  |  |  |  |  |
| 33                                                                       | 0.01603  | 0.01614 | 0.01785    |  |  |  |  |  |  |  |  |
| 34                                                                       | 0.01795  | 0.01775 | 0.02056    |  |  |  |  |  |  |  |  |
| 35                                                                       | 0.01988  | 0.01950 | 0.02349    |  |  |  |  |  |  |  |  |
| 36                                                                       | 0.02088  | 0.02138 | 0.02663    |  |  |  |  |  |  |  |  |
| 37                                                                       | 0.02339  | 0.02341 | 0.02999    |  |  |  |  |  |  |  |  |
| 38                                                                       | 0.02605  | 0.02559 | 0.03355    |  |  |  |  |  |  |  |  |
| 39                                                                       | 0.02887  | 0.02794 | 0.03732    |  |  |  |  |  |  |  |  |
| 40                                                                       | 0.03186  | 0.03095 | 0.04129    |  |  |  |  |  |  |  |  |
| 41                                                                       | 0.03504  | 0.03354 | 0.04546    |  |  |  |  |  |  |  |  |
| 42                                                                       | 0.03843  | 0.03633 | 0.04983    |  |  |  |  |  |  |  |  |
| 43                                                                       | 0.04203  | 0.03931 | 0.05438    |  |  |  |  |  |  |  |  |
| 44                                                                       | 0.04587  | 0.04249 | 0.05912    |  |  |  |  |  |  |  |  |
| 45                                                                       | 0.04994  | 0.04589 | 0.06405    |  |  |  |  |  |  |  |  |
| 46                                                                       | 0.05427  | 0.04952 | 0.06916    |  |  |  |  |  |  |  |  |
| 47                                                                       | 0.05886  | 0.05338 | 0.07444    |  |  |  |  |  |  |  |  |
| 48                                                                       | 0.06372  | 0.05748 | 0.07991    |  |  |  |  |  |  |  |  |
| 49                                                                       | 0.06886  | 0.06184 | 0.08554    |  |  |  |  |  |  |  |  |
| 50                                                                       | 0.07428  | 0.06646 | 0.09136    |  |  |  |  |  |  |  |  |
| 51                                                                       | 0.07998  | 0.07135 | 0.09734    |  |  |  |  |  |  |  |  |
| 52                                                                       | 0.08598  | 0.07653 | 0.10350    |  |  |  |  |  |  |  |  |
| 53                                                                       | 0.09228  | 0.08199 | 0.10984    |  |  |  |  |  |  |  |  |
| 54                                                                       | 0.09887  | 0.08775 | 0.11635    |  |  |  |  |  |  |  |  |
| 55                                                                       | 0.10577  | 0.09381 | 0.12305    |  |  |  |  |  |  |  |  |
| 56                                                                       | 0.11296  | 0.10018 | 0.12992    |  |  |  |  |  |  |  |  |
| 57                                                                       | 0.12045  | 0.10687 | 0.13698    |  |  |  |  |  |  |  |  |

| 58 | 0.12823 | 0.11388 | 0.14424 |
|----|---------|---------|---------|
| 59 | 0.13631 | 0.12121 | 0.15169 |
| 60 | 0.14468 | 0.12886 | 0.15934 |
| 61 | 0.15334 | 0.13684 | 0.16719 |
| 62 | 0.16228 | 0.14516 | 0.17526 |
| 63 | 0.17149 | 0.15379 | 0.18355 |
| 64 | 0.18096 | 0.16276 | 0.19207 |
| 65 | 0.19069 | 0.17204 | 0.20082 |
| 66 | 0.20067 | 0.18164 | 0.20982 |
| 67 | 0.21088 | 0.19155 | 0.21907 |
| 68 | 0.22131 | 0.20176 | 0.22857 |
| 69 | 0.23196 | 0.21227 | 0.23834 |
| 70 | 0.24281 | 0.22306 | 0.24839 |
| 71 | 0.25383 | 0.23412 | 0.25871 |
| 72 | 0.26503 | 0.24545 | 0.26932 |
| 73 | 0.27637 | 0.25701 | 0.28023 |
| 74 | 0.28785 | 0.26881 | 0.29143 |
| 75 | 0.29944 | 0.28082 | 0.30293 |
| 76 | 0.31112 | 0.29302 | 0.31474 |
| 77 | 0.32288 | 0.30541 | 0.32685 |
| 78 | 0.33468 | 0.31795 | 0.33927 |
| 79 | 0.34652 | 0.33063 | 0.35200 |
| 80 | 0.35836 | 0.34343 | 0.36504 |
| 81 | 0.37018 | 0.35633 | 0.37837 |
| 82 | 0.38195 | 0.36931 | 0.39199 |
| 83 | 0.39365 | 0.38235 | 0.40589 |
| 84 | 0.40525 | 0.39542 | 0.42007 |
| 85 | 0.41672 | 0.40851 | 0.43451 |
| 86 | 0.42804 | 0.42160 | 0.44919 |
| 87 | 0.43916 | 0.43467 | 0.46409 |
| 88 | 0.45006 | 0.44769 | 0.47920 |
| 89 | 0.46070 | 0.46066 | 0.49449 |
| 90 | 0.47106 | 0.47354 | 0.50993 |
| 91 | 0.48109 | 0.48633 | 0.52550 |
| 92 | 0.49076 | 0.49901 | 0.54117 |
| 93 | 0.50004 | 0.51376 | 0.55690 |
| 94 | 0.50888 | 0.52661 | 0.57267 |
| 95 | 0.51725 | 0.53934 | 0.58844 |
| 96 | 0.52511 | 0.55193 | 0.60418 |

#### 9.5 L shell Energies

The L shell characteristic X-ray energies, sourced from Kaye&Laby (http://www.kayelaby.npl.co.uk/atomic\_and\_nuclear\_physics/4\_2/4\_2\_1.html) are stored in file

#### Lshellenergiesa1-2b1-6g1-6at13Feb11.txt.

A value of -9 implies that the energy is not available.

## Table 18: L shell characteristic X-ray Energies.

| * 23                                            | Nove   | ember 20 | 010       |          |            |           |          |           |            |     |     |     |     |        |     |        |        |
|-------------------------------------------------|--------|----------|-----------|----------|------------|-----------|----------|-----------|------------|-----|-----|-----|-----|--------|-----|--------|--------|
| * En                                            | ergie  | s obtain | ned from  | GEOPIX   | E and *    | Kaye&La   | ıby      |           |            |     |     |     |     |        |     |        |        |
| * htt                                           | p://w  | ww.kaye  | elaby.npl | .co.uk/a | tomic_ar   | nd_nucle  | ear_phys | sics/4_2/ | 4_2_1.ht   | ml  |     |     |     |        |     |        |        |
| * WI                                            | nere e | enetries | were mis  | ssing fo | r a certai | n z and a | an energ | y was a   | vailable o | on  |     |     |     |        |     |        |        |
| * either side and interpolation was carried out |        |          |           |          |            | out       |          |           |            |     |     |     |     |        |     |        |        |
| * El                                            | Ζ      | Lα1      | Lα2       | Lβ1      | Lβ2        | Lβ3       | Lβ4      | Lβ5       | Lβ6        | Lγ1 | Lγ2 | Lγ3 | Lγ4 | Lγ5    | Lγ6 | LI     | Lη     |
| K                                               | 19     | -9       | -9        | -9       | -9         | -9        | -9       | -9        | -9         | -9  | -9  | -9  | -9  | -9     | -9  | -9     | -9     |
| Са                                              | 20     | -9       | -9        | -9       | -9         | -9        | -9       | -9        | -9         | -9  | -9  | -9  | -9  | -9     | -9  | -9     | -9     |
| Sc                                              | 21     | 0.3950   | 0.3950    | 0.4000   | -9         | -9        | -9       | -9        | -9         | -9  | -9  | -9  | -9  | -9     | -9  | 0.3480 | -9     |
| Ti                                              | 22     | 0.4520   | 0.4520    | 0.4580   | -9         | -9        | -9       | -9        | -9         | -9  | -9  | -9  | -9  | -9     | -9  | 0.3950 | -9     |
| V                                               | 23     | 0.5110   | 0.5110    | 0.5190   | -9         | 0.5850    | 0.5850   | -9        | -9         | -9  | -9  | -9  | -9  | -9     | -9  | 0.4460 | -9     |
| Cr                                              | 24     | 0.5730   | 0.5730    | 0.5830   | -9         | 0.6540    | 0.6540   | -9        | -9         | -9  | -9  | -9  | -9  | -9     | -9  | 0.5000 | -9     |
| Mn                                              | 25     | 0.6370   | 0.6370    | 0.6490   | -9         | 0.7210    | 0.7210   | -9        | -9         | -9  | -9  | -9  | -9  | -9     | -9  | 0.5560 | -9     |
| Fe                                              | 26     | 0.7050   | 0.7050    | 0.7190   | -9         | 0.7920    | 0.7920   | -9        | -9         | -9  | -9  | -9  | -9  | -9     | -9  | 0.6150 | -9     |
| Со                                              | 27     | 0.7760   | 0.7760    | 0.7910   | -9         | 0.8700    | 0.8700   | -9        | -9         | -9  | -9  | -9  | -9  | -9     | -9  | 0.6780 | -9     |
| Ni                                              | 28     | 0.8520   | 0.8520    | 0.8690   | -9         | 0.9410    | 0.9410   | -9        | -9         | -9  | -9  | -9  | -9  | -9     | -9  | 0.7430 | -9     |
| Cu                                              | 29     | 0.9300   | 0.9300    | 0.9500   | -9         | 1.0230    | 1.0190   | -9        | -9         | -9  | -9  | -9  | -9  | -9     | -9  | 0.8110 | -9     |
| Zn                                              | 30     | 1.0120   | 1.0120    | 1.0340   | -9         | 1.1070    | 1.1020   | -9        | -9         | -9  | -9  | -9  | -9  | -9     | -9  | 0.8840 | -9     |
| Ga                                              | 31     | 1.0980   | 1.0980    | 1.1250   | -9         | 1.1970    | 1.1910   | -9        | -9         | -9  | -9  | -9  | -9  | -9     | -9  | 0.9570 | -9     |
| Ge                                              | 32     | 1.1880   | 1.1880    | 1.2180   | -9         | 1.2940    | 1.2860   | -9        | -9         | -9  | -9  | -9  | -9  | -9     | -9  | 1.0360 | 1.0680 |
| As                                              | 33     | 1.2820   | 1.2820    | 1.3170   | -9         | 1.3880    | 1.3800   | -9        | -9         | -9  | -9  | -9  | -9  | -9     | -9  | 1.1200 | 1.1550 |
| Se                                              | 34     | 1.3790   | 1.3790    | 1.4190   | -9         | 1.4900    | 1.4850   | -9        | -9         | -9  | -9  | -9  | -9  | -9     | -9  | 1.2040 | 1.2440 |
| Br                                              | 35     | 1.4800   | 1.4800    | 1.5260   | -9         | 1.5960    | 1.5930   | -9        | -9         | -9  | -9  | -9  | -9  | -9     | -9  | 1.2930 | 1.3390 |
| Kr                                              | 36     | 1.5860   | 1.5860    | 1.6360   | -9         | 1.7060    | 1.6970   | -9        | 1.6510     | -9  | -9  | -9  | -9  | 1.7030 | -9  | 1.3860 | 1.4405 |

| Rb | 37 | 1.6940 | 1.6920 | 1.7520 | -9     | 1.8260 | 1.8170 | -9     | 1.7750 | -9      | 2.0500  | -9      | -9      | 1.8353  | -9      | 1.4820 | 1.5420 |
|----|----|--------|--------|--------|--------|--------|--------|--------|--------|---------|---------|---------|---------|---------|---------|--------|--------|
| Sr | 38 | 1.8060 | 1.8040 | 1.8710 | -9     | 1.9470 | 1.9360 | -9     | 1.9010 | -9      | 2.1960  | -9      | -9      | 1.9692  | -9      | 1.5820 | 1.6490 |
| Y  | 39 | 1.9230 | 1.9200 | 1.9950 | -9     | 2.0720 | 2.0600 | -9     | 2.0340 | -9      | 2.3460  | -9      | -9      | 2.1100  | -9      | 1.6850 | 1.7610 |
| Zr | 40 | 2.0430 | 2.0399 | 2.1244 | 2.2150 | 2.2010 | 2.1873 | -9     | 2.1712 | 2.3027  | 2.5020  | -9      | -9      | 2.2551  | -9      | 1.7920 | 1.8765 |
| Nb | 41 | 2.1660 | 2.1630 | 2.2570 | 2.3570 | 2.3340 | 2.3190 | -9     | 2.3120 | 2.4610  | 2.6630  | -9      | -9      | 2.4060  | -9      | 1.9020 | 1.9960 |
| Мо | 42 | 2.2950 | 2.2910 | 2.3940 | 2.5080 | 2.4730 | 2.4550 | -9     | 2.4550 | 2.6230  | 2.8300  | -9      | -9      | 2.5630  | -9      | 2.0150 | 2.1200 |
| Тс | 43 | 2.4240 | 2.4210 | 2.5360 | 2.6640 | 2.6180 | 2.5980 | -9     | 2.6090 | 2.7935  | 3.0050  | -9      | -9      | 2.7270  | -9      | 2.1310 | 2.2510 |
| Ru | 44 | 2.5560 | 2.5540 | 2.6830 | 2.8250 | 2.7630 | 2.7410 | -9     | 2.7630 | 2.9640  | 3.1800  | -9      | -9      | 2.8910  | -9      | 2.2520 | 2.3820 |
| Rh | 45 | 2.6980 | 2.6920 | 2.8340 | 2.9920 | 2.9150 | 2.8900 | -9     | 2.9220 | 3.1430  | 3.3630  | -9      | -9      | 3.0640  | -9      | 2.3760 | 2.5190 |
| Pd | 46 | 2.8380 | 2.8330 | 2.9900 | 3.1710 | 3.0720 | 3.0450 | -9     | 3.0870 | 3.3280  | 3.5530  | -9      | -9      | 3.2430  | -9      | 2.5030 | 2.6600 |
| Ag | 47 | 2.9850 | 2.9790 | 3.1500 | 3.3470 | 3.2340 | 3.2030 | -9     | 3.2550 | 3.5190  | 3.7432  | 3.7490  | -9      | 3.4280  | -9      | 2.6330 | 2.8060 |
| Cd | 48 | 3.1340 | 3.1310 | 3.3160 | 3.5280 | 3.4010 | 3.3670 | -9     | 3.4290 | 3.7160  | 3.9513  | 3.9570  | -9      | 3.6190  | -9      | 2.7670 | 2.9560 |
| In | 49 | 3.2880 | 3.2800 | 3.4870 | 3.7130 | 3.5720 | 3.5350 | -9     | 3.6080 | 3.9200  | 4.1650  | 4.1651  | 4.2367  | 3.8150  | -9      | 2.9040 | 3.1120 |
| Sn | 50 | 3.4420 | 3.4330 | 3.6620 | 3.9040 | 3.7500 | 3.7080 | -9     | 3.7920 | 4.1300  | 4.3760  | 4.3768  | 4.4638  | 4.0180  | -9      | 3.0440 | 3.2720 |
| Sb | 51 | 3.6040 | 3.5940 | 3.8430 | 4.1000 | 3.9320 | 3.8860 | -9     | 3.9790 | 4.3470  | 4.5990  | 4.5999  | 4.6967  | 4.2280  | -9      | 3.1880 | 3.4360 |
| Те | 52 | 3.7700 | 3.7590 | 4.0290 | 4.3010 | 4.1200 | 4.0690 | -9     | 4.1730 | 4.5700  | 4.8280  | 4.8280  | 4.9369  | 4.4430  | -9      | 3.3350 | 3.6050 |
| I  | 53 | 3.9370 | 3.9250 | 4.2200 | 4.5070 | 4.3130 | 4.2570 | -9     | 4.3700 | 4.8000  | 5.0650  | 5.0650  | 5.1840  | 4.6650  | -9      | 3.4840 | 3.7800 |
| Xe | 54 | 4.1100 | 4.0950 | 4.4150 | 4.7720 | 4.5160 | 4.4530 | -9     | 4.5750 | 5.0395  | 5.3030  | 5.3085  | 5.4430  | 4.8965  | -9      | 3.6250 | 3.9605 |
| Cs | 55 | 4.2860 | 4.2720 | 4.6190 | 4.9350 | 4.7160 | 4.6490 | -9     | 4.7800 | 5.2790  | 5.5410  | 5.5520  | 5.7020  | 5.1280  | -9      | 3.7940 | 4.1410 |
| Ba | 56 | 4.4650 | 4.4500 | 4.8270 | 5.1560 | 4.9260 | 4.8510 | -9     | 4.9930 | 5.5300  | 5.7960  | 5.8080  | 5.9720  | 5.3700  | -9      | 3.9530 | 4.3300 |
| La | 57 | 4.6470 | 4.6330 | 5.0410 | 5.3830 | 5.1430 | 5.0610 | -9     | 5.2110 | 5.7880  | 6.0590  | 6.0600  | 6.2510  | 5.6200  | -9      | 4.1240 | 4.5240 |
| Ce | 58 | 4.8390 | 4.8220 | 5.2610 | 5.6120 | 5.3640 | 5.2760 | -9     | 5.4330 | 6.0510  | 6.3240  | 6.3400  | 6.5270  | 5.8740  | -9      | 4.2870 | 4.7310 |
| Pr | 59 | 5.0330 | 5.0130 | 5.4880 | 5.8490 | 5.5910 | 5.4970 | -9     | 5.6590 | 6.3210  | 6.5970  | 6.6150  | 6.8140  | 6.1350  | -9      | 4.4520 | 4.9350 |
| Nd | 60 | 5.2290 | 5.2070 | 5.7210 | 6.0880 | 5.8280 | 5.7210 | -9     | 5.8920 | 6.6010  | 6.8820  | 6.9000  | 7.1060  | 6.4050  | -9      | 4.6320 | 5.1450 |
| Pm | 61 | 5.4320 | 5.4070 | 5.9600 | 6.3380 | 6.0700 | 5.9590 | -9     | 6.1305 | 6.8910  | 7.1735  | 7.1925  | 7.4090  | 6.6860  | -9      | 4.7850 | 5.3665 |
| Sm | 62 | 5.6350 | 5.6070 | 6.2040 | 6.5860 | 6.3170 | 6.1950 | 6.7126 | 6.3690 | 7.1770  | 7.4650  | 7.4850  | 7.7120  | 6.9670  | 7.3060  | 4.9940 | 5.5880 |
| Eu | 63 | 5.8450 | 5.8160 | 6.4550 | 6.8420 | 6.5700 | 6.4380 | 6.9735 | 6.6160 | 7.4790  | 7.7660  | 7.7950  | 8.0290  | 7.2550  | 7.6130  | 5.1760 | 5.8160 |
| Gd | 64 | 6.0560 | 6.0240 | 6.7120 | 7.1020 | 6.8300 | 6.6860 | 7.2374 | 6.8660 | 7.7840  | 8.0860  | 8.1040  | 8.3540  | 7.5530  | 7.9240  | 5.3610 | 6.0490 |
| Tb | 65 | 6.2720 | 6.2370 | 6.9770 | 7.3650 | 7.0950 | 6.9390 | 7.5094 | 7.1150 | 8.1000  | 8.3960  | 8.4220  | 8.6830  | 7.8520  | 8.2450  | 5.5460 | 6.2830 |
| Dy | 66 | 6.4940 | 6.4570 | 7.2460 | 7.6340 | 7.3690 | 7.2030 | 7.8055 | 7.3690 | 8.4170  | 8.7130  | 8.7520  | 9.0180  | 8.1650  | 8.5740  | 5.7420 | 6.5330 |
| Ho | 67 | 6.7190 | 6.6790 | 7.5240 | 7.9100 | 7.6500 | 7.4700 | 8.0610 | 7.6340 | 8.7460  | 9.0490  | 9.0860  | 9.3730  | 8.4800  | 8.9030  | 5.9420 | 6.7870 |
| Er | 68 | 6.9470 | 6.9040 | 7.8090 | 8.1880 | 7.9380 | 7.7440 | 8.3490 | 7.9080 | 9.0870  | 9.3840  | 9.4290  | 9.7210  | 8.8120  | 9.2530  | 6.1520 | 7.0570 |
| Tm | 69 | 7.1790 | 7.1320 | 8.1000 | 8.4670 | 8.2290 | 8.0240 | 8.6390 | 8.1760 | 9.4240  | 9.7280  | 9.7780  | 10.0830 | 9.1430  | 9.6060  | 6.3410 | 7.3080 |
| Yb | 70 | 7.4140 | 7.3660 | 8.4000 | 8.7570 | 8.5350 | 8.3120 | 8.9380 | 8.4550 | 9.7780  | 10.0880 | 10.1410 | 10.4580 | 9.4890  | 9.9750  | 6.5440 | 7.5790 |
| Lu | 71 | 7.6540 | 7.6040 | 8.7080 | 9.0470 | 8.8450 | 8.6050 | 9.2380 | 8.7360 | 10.1420 | 10.4580 | 10.5090 | 10.8400 | 9.8410  | 10.3410 | 6.7520 | 7.8560 |
| Hf | 72 | 7.8980 | 7.8430 | 9.0210 | 9.3460 | 9.1620 | 8.9040 | 9.5530 | 9.0210 | 10.5140 | 10.8320 | 10.8890 | 11.2380 | 10.1990 | 10.7310 | 6.9580 | 8.1380 |

| Та | 73  | 8.1450  | 8.0860  | 9.3420  | 9.6500  | 9.4860  | 9.2110  | 9.8730  | 9.3140  | 10.8930 | 11.2150 | 11.2760 | 11.6430 | 10.5690 | 11.1290 | 7.1720  | 8.4270  |
|----|-----|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| W  | 74  | 8.3960  | 8.3340  | 9.6710  | 9.9600  | 9.8170  | 9.5240  | 10.1990 | 9.6100  | 11.2840 | 11.6060 | 11.6720 | 12.0610 | 10.9470 | 11.5370 | 7.3860  | 8.7230  |
| Re | 75  | 8.6510  | 8.5850  | 10.0080 | 10.2740 | 10.1580 | 9.8450  | 10.5300 | 9.9090  | 11.6830 | 12.0080 | 12.0800 | 12.4900 | 11.3320 | 11.9540 | 7.6020  | 9.0260  |
| Os | 76  | 8.9100  | 8.8400  | 10.3540 | 10.5970 | 10.5090 | 10.1740 | 10.8690 | 10.2150 | 12.0930 | 12.4200 | 12.4980 | 12.9210 | 11.7280 | 12.3830 | 7.8210  | 9.3350  |
| lr | 77  | 9.1740  | 9.0980  | 10.7060 | 10.9190 | 10.8660 | 10.5090 | 11.2090 | 10.5230 | 12.5100 | 12.8400 | 12.9220 | 13.3660 | 12.1320 | 12.8180 | 8.0400  | 9.6490  |
| Pt | 78  | 9.4410  | 9.3600  | 11.0690 | 11.2490 | 11.2330 | 10.8520 | 11.5590 | 10.8400 | 12.9400 | 13.2680 | 13.3590 | 13.8260 | 12.5500 | 13.2690 | 8.2670  | 9.9730  |
| Au | 79  | 9.7120  | 9.6260  | 11.4400 | 11.5830 | 11.6080 | 11.2030 | 11.9140 | 11.1580 | 13.3790 | 13.7070 | 13.8070 | 14.2970 | 12.9720 | 13.7280 | 8.4930  | 10.3070 |
| Hg | 80  | 9.9870  | 9.8960  | 11.8210 | 11.9220 | 11.9930 | 11.5610 | 12.2750 | 11.4800 | 13.8280 | 14.1600 | 14.2620 | 14.7760 | 13.4080 | 14.1960 | 8.7200  | 10.6490 |
| ΤI | 81  | 10.2670 | 10.1710 | 12.2110 | 12.2700 | 12.3880 | 11.9290 | 12.6410 | 11.8100 | 14.2890 | 14.6230 | 14.7340 | 15.2690 | 13.8500 | 14.6840 | 8.9520  | 10.9920 |
| Pb | 82  | 10.5500 | 10.4480 | 12.6120 | 12.6210 | 12.7910 | 12.3040 | 13.0130 | 12.1410 | 14.7620 | 15.0990 | 15.2150 | 15.7750 | 14.3050 | 15.1760 | 9.1830  | 11.3470 |
| Bi | 83  | 10.8370 | 10.7290 | 13.0210 | 12.9780 | 13.2080 | 12.6890 | 13.3930 | 12.4790 | 15.2450 | 15.5800 | 15.7080 | 16.2920 | 14.7710 | 15.6830 | 9.4190  | 11.7200 |
| Po | 84  | 11.1290 | 11.0140 | 13.4450 | 13.3380 | 13.6350 | 13.0830 | 13.7790 | 12.8160 | 15.7410 | 16.0570 | 16.2368 | 16.8502 | 15.2710 | 16.2150 | 9.6620  | 12.1078 |
| At | 85  | 11.4250 | 11.3030 | 13.8740 | 13.7080 | 14.0650 | 13.4870 | 14.1780 | 13.1705 | 16.2490 | 16.5868 | 16.7660 | 17.4080 | 15.7710 | 16.7640 | 9.8580  | 12.4960 |
| Rn | 86  | 11.7250 | 11.5960 | 14.3130 | 14.0790 | 14.5090 | 13.8910 | 14.5770 | 13.5250 | 16.7680 | 17.1165 | 17.2952 | 17.9658 | 16.2710 | 17.3130 | 10.0850 | 12.8842 |
| Fr | 87  | 12.0290 | 11.8930 | 14.7680 | 14.4480 | 14.9730 | 14.3060 | 14.9760 | 13.8795 | 17.3000 | 17.6463 | 17.8244 | 18.5236 | 16.7710 | 17.8620 | 10.3400 | 13.2724 |
| Ra | 88  | 12.3380 | 12.1940 | 15.2330 | 14.8390 | 15.4420 | 14.7450 | 15.3750 | 14.2340 | 17.8450 | 18.1760 | 18.3540 | 19.0810 | 17.2710 | 18.4110 | 10.6200 | 13.6610 |
| Ac | 89  | 12.6500 | 12.4990 | 15.7100 | 15.2270 | 15.9290 | 15.1860 | 15.7930 | 14.6035 | 18.4050 | 18.7390 | 18.9285 | 19.6850 | 17.8160 | 19.0035 | 10.8360 | 14.0840 |
| Th | 90  | 12.9670 | 12.8070 | 16.1990 | 15.6210 | 16.4230 | 15.6400 | 16.2110 | 14.9730 | 18.9790 | 19.3020 | 19.5030 | 20.2890 | 18.3610 | 19.5960 | 11.1170 | 14.5070 |
| Ра | 91  | 13.2880 | 13.1200 | 16.6990 | 16.0220 | 16.9270 | 16.1010 | 16.6340 | 15.3430 | 19.5650 | 19.8690 | 20.0940 | 20.8790 | 18.9250 | 20.2120 | 11.3640 | 14.9440 |
| U  | 92  | 13.6120 | 13.4370 | 17.2170 | 16.4250 | 17.4520 | 16.5730 | 17.0670 | 15.7230 | 20.1640 | 20.4810 | 20.7090 | 21.5590 | 19.5040 | 20.8390 | 11.6160 | 15.3970 |
| NP | 93  | 13.9440 | 13.7600 | 17.7510 | 16.8400 | 17.9920 | 17.0610 | 17.5081 | 16.1300 | 20.7848 | 21.1100 | 21.3400 | 22.2000 | 20.1200 | 21.4880 | 11.8900 | 15.8760 |
| PU | 94  | 14.2790 | 14.0840 | 18.2930 | 17.2560 | 18.5400 | 17.5560 | 17.9506 | 16.4983 | 21.4173 | 21.7251 | 21.9824 | 22.8910 | 20.7040 | 22.1502 | 12.1240 | 16.3330 |
| AM | 95  | 14.6170 | 14.4120 | 18.8520 | 17.6760 | 19.1060 | 18.0630 | 18.3996 | 16.8870 | 22.0652 | 22.3610 | -9      | -9      | -9      | 22.8282 | 12.3840 | -9      |
| CM | 96  | 14.9590 | 14.7030 | 19.9520 | -9      | 19.6630 | 18.5650 | -9      | -9      | -9      | -9      | -9      | -9      | -9      | -9      | -9      | -9      |
| ΒK | 97  | 15.3200 | 15.0860 | 20.0190 | -9      | 20.3480 | 19.1280 | -9      | -9      | -9      | -9      | -9      | -9      | -9      | -9      | -9      | -9      |
| CR | 98  | 15.6770 | 15.4430 | 20.7630 | -9      | 21.0010 | 19.7510 | -9      | -9      | -9      | -9      | -9      | -9      | -9      | -9      | -9      | -9      |
| ES | 99  | 16.0360 | 15.7800 | 21.3900 | -9      | 21.6480 | 20.3260 | -9      | -9      | -9      | -9      | -9      | -9      | -9      | -9      | -9      | -9      |
| FM | 100 | 16.4020 | 16.1340 | 22.0440 | -9      | 22.3030 | 20.9570 | -9      | -9      | -9      | -9      | -9      | -9      | -9      | -9      | -9      | -9      |
| MD | 101 | 16.7680 | 16.4870 | 22.7070 | -9      | 22.9840 | 21.5110 | -9      | -9      | -9      | -9      | -9      | -9      | -9      | -9      | -9      | -9      |
| NO | 102 | 17.1390 | 16.8430 | 23.4030 | -9      | 23.6920 | 22.1350 | -9      | -9      | -9      | -9      | -9      | -9      | -9      | -9      | -9      | -9      |
| LW | 103 | 17.5000 | 17.2100 | 24.1300 | -9      | 24.5300 | 22.7800 | -9      | -9      | -9      | -9      | -9      | -9      | -9      | -9      | -9      | -9      |

## **10** Appendix 3: Files for M shell calculations

For the M-shell relative intensity calculations the data tables, stored in the following files, are needed:

- **table1.txt**, **table2.txt**, **table3.txt** tables from Johnson et al. (1979) for the M-shell ionization cross sections calculation.
- *Mshell\_edges.txt* M-shell edge energies (Weast 1970).
- **MsubshellDHSEmissionRatesat28Feb11.txt** DHS emission rates (Puri, 2007).
- MsubshellDFEmissionRatesat28Feb11.txt DF emission rates (Puri, 2007).
- **MsubshellFluorescenceyldswisat31Mar11.txt** fluorescence yield (Chauhan and Puri, 2008).
- **MsubshellSuperSijBambynekat4Mar11.txt** super Coster-Kronig probabilities (Bambynek at al. 1972).
- **MsubshellCKfijsat28Feb11.txt** Coster-Kronig probabilities (Chauhan and Puri, 2008).
- *MLineEnergies\_Calculated.txt* M-shell characteristic X-ray energies.

#### 10.1 M shell edge energies

The M-shell edge energies in keV are taken from (Weast 1970).

| *Element | Z  | Mass    | M1     | M2     | M3     | M4     | M5     |
|----------|----|---------|--------|--------|--------|--------|--------|
| SN       | 50 | 118.690 | 0.8847 | 0.7565 | 0.7146 | 0.4932 | 0.4849 |
| SB       | 51 | 121.750 | 0.9460 | 0.8127 | 0.7664 | 0.5375 | 0.5282 |
| TE       | 52 | 127.600 | 1.0060 | 0.8708 | 0.8200 | 0.5834 | 0.5730 |
| 1        | 53 | 126.904 | 1.0720 | 0.9310 | 0.8750 | 0.6308 | 0.6193 |
| XE       | 54 | 131.300 | 1.1487 | 1.0021 | 0.9406 | 0.6890 | 0.6764 |
| CS       | 55 | 132.905 | 1.2110 | 1.0710 | 1.0030 | 0.7405 | 0.7266 |
| BA       | 56 | 137.340 | 1.2930 | 1.1370 | 1.0630 | 0.7957 | 0.7805 |
| LA       | 57 | 138.910 | 1.3620 | 1.2090 | 1.1280 | 0.8530 | 0.8360 |
| CE       | 58 | 140.120 | 1.4360 | 1.2740 | 1.1870 | 0.9024 | 0.8838 |
| PR       | 59 | 140.907 | 1.5110 | 1.3370 | 1.2420 | 0.9483 | 0.9288 |
| ND       | 60 | 144.240 | 1.5750 | 1.4030 | 1.2970 | 1.0033 | 0.9804 |
| PM       | 61 | 145.000 | 1.6490 | 1.4710 | 1.3570 | 1.0520 | 1.0270 |
| SM       | 62 | 150.350 | 1.7230 | 1.5410 | 1.4200 | 1.1109 | 1.0834 |
| EU       | 63 | 151.960 | 1.8000 | 1.6140 | 1.4810 | 1.1586 | 1.1275 |
| GD       | 64 | 157.250 | 1.8810 | 1.6880 | 1.5440 | 1.2219 | 1.1896 |
| ТВ       | 65 | 158.924 | 1.9680 | 1.7680 | 1.6110 | 1.2769 | 1.2411 |
| DY       | 66 | 162.500 | 2.0470 | 1.8420 | 1.6760 | 1.3330 | 1.2926 |
| НО       | 67 | 164.930 | 2.1280 | 1.9230 | 1.7410 | 1.3920 | 1.3510 |
| ER       | 68 | 167.260 | 2.2070 | 2.0060 | 1.8120 | 1.4530 | 1.4090 |
| ТМ       | 69 | 168.934 | 2.3070 | 2.0900 | 1.8850 | 1.5150 | 1.4680 |
| YB       | 70 | 173.040 | 2.3980 | 2.1730 | 1.9500 | 1.5760 | 1.5280 |
| LU       | 71 | 174.970 | 2.4910 | 2.2640 | 2.0240 | 1.6390 | 1.5890 |
| HF       | 72 | 178.490 | 2.6010 | 2.3650 | 2.1080 | 1.7160 | 1.6620 |
| TA       | 73 | 180.948 | 2.7080 | 2.4690 | 2.1940 | 1.7930 | 1.7350 |
| W        | 74 | 183.850 | 2.8200 | 2.5750 | 2.2810 | 1.8720 | 1.8090 |

#### Table 19: M subshell edge energies (keV).

| Re | 75 | 186.200 | 2.9320 | 2.6820 | 2.3670 | 1.9490 | 1.8830 |
|----|----|---------|--------|--------|--------|--------|--------|
| OS | 76 | 190.200 | 3.0490 | 2.7920 | 2.4570 | 2.0310 | 1.9600 |
| IR | 77 | 192.200 | 3.1740 | 2.9090 | 2.5510 | 2.1160 | 2.0400 |
| PT | 78 | 195.090 | 3.2960 | 3.0270 | 2.6450 | 2.2020 | 2.1220 |
| AU | 79 | 196.967 | 3.4250 | 3.1480 | 2.7430 | 2.2910 | 2.2060 |
| HG | 80 | 200.590 | 3.5620 | 3.2790 | 2.8470 | 2.3850 | 2.2950 |
| TL | 81 | 204.370 | 3.7040 | 3.4160 | 2.9570 | 2.4850 | 2.3890 |
| PB | 82 | 207.190 | 3.8510 | 3.5540 | 3.0660 | 2.5860 | 2.4840 |
| BI | 83 | 208.980 | 3.9990 | 3.6960 | 3.1770 | 2.6880 | 2.5800 |
| PO | 84 | 210.000 | 4.1490 | 3.8540 | 3.3020 | 2.7980 | 2.6830 |
| At | 85 | 210.000 | 4.3170 | 4.0080 | 3.4260 | 2.9090 | 2.7870 |
| RN | 86 | 222.000 | 4.4820 | 4.1590 | 3.5380 | 3.0220 | 2.8920 |
| FR | 87 | 223.000 | 4.6520 | 4.3270 | 3.6630 | 3.1360 | 3.0000 |
| RA | 88 | 226.000 | 4.8220 | 4.4900 | 3.7920 | 3.2480 | 3.1050 |
| AC | 89 | 227.000 | 5.0020 | 4.6560 | 3.9090 | 3.3700 | 3.2190 |
| ТН | 90 | 232.038 | 5.1820 | 4.8300 | 4.0460 | 3.4910 | 3.3320 |
| PA | 91 | 231.036 | 5.3670 | 5.0010 | 4.1740 | 3.6110 | 3.4420 |
| U  | 92 | 238.030 | 5.5480 | 5.1820 | 4.3030 | 3.7280 | 3.5520 |
| NP | 93 | 237.000 | 5.7232 | 5.3662 | 4.4347 | 3.8503 | 3.6658 |
| PU | 94 | 239.000 | 5.9329 | 5.5412 | 4.5566 | 3.9726 | 3.7781 |
| AM | 95 | 242.000 | 6.1205 | 5.7102 | 4.6670 | 4.0921 | 3.8869 |
| СМ | 96 | 245.000 | 6.2880 | 5.8950 | 4.7970 | 4.2270 | 3.9710 |

#### 10.2 M shell emission rates

Two options are available for the M shell emission rates; DHS and DF (Puri, 2007).

#### 10.2.1 DHS emission rates

The following two tables for the DHS emission rates are stored side by side in file

#### MsubshellDHSEmissionRatesat28Feb11.txt.

Please note that Z is included in the second tables only in this Appendix and not in the original file.

#### Table 20: M shell DHS emission rates (part I).

| *Or<br>valı | igin interpo<br>Jes | lated   |         |         |         |         |         |         |         |
|-------------|---------------------|---------|---------|---------|---------|---------|---------|---------|---------|
| *DH         | IS Theory           |         |         |         |         |         |         |         |         |
| *Z          | (M5-N3)             | (M5-N7) | (M5-N6) | (M5-O3) | (M4-N2) | (M4-N3) | (M4-N6) | (M4-O3) | (M4-O2) |
| 65          | 5.920               | 100     | 5.130   | 0.780   | 6.120   | 0.840   | 100     | 0.110   | 0.830   |
| 66          | 5.845               | 100     | 5.140   | 0.755   | 6.105   | 0.825   | 100     | 0.105   | 0.815   |
| 67          | 5.770               | 100     | 5.150   | 0.730   | 6.090   | 0.810   | 100     | 0.100   | 0.800   |
| 68          | 5.700               | 100     | 5.155   | 0.705   | 6.080   | 0.795   | 100     | 0.095   | 0.785   |
| 69          | 5.630               | 100     | 5.160   | 0.680   | 6.070   | 0.780   | 100     | 0.090   | 0.770   |
| 70          | 5.485               | 100     | 5.165   | 0.665   | 5.985   | 0.755   | 100     | 0.090   | 0.765   |
| 71          | 5.340               | 100     | 5.170   | 0.650   | 5.900   | 0.730   | 100     | 0.090   | 0.760   |
| 72          | 5.135               | 100     | 5.165   | 0.650   | 5.745   | 0.700   | 100     | 0.090   | 0.765   |
| 73          | 4.930               | 100     | 5.160   | 0.650   | 5.590   | 0.670   | 100     | 0.090   | 0.770   |
| 74          | 4.745               | 100     | 5.155   | 0.645   | 5.445   | 0.645   | 100     | 0.090   | 0.775   |
| 75          | 4.560               | 100     | 5.150   | 0.640   | 5.300   | 0.620   | 100     | 0.090   | 0.780   |

| 76 | 4.395 | 100 | 5.140 | 0.640 | 5.170 | 0.595 | 100 | 0.090 | 0.785 |
|----|-------|-----|-------|-------|-------|-------|-----|-------|-------|
| 77 | 4.230 | 100 | 5.130 | 0.640 | 5.040 | 0.570 | 100 | 0.090 | 0.790 |
| 78 | 4.080 | 100 | 5.125 | 0.635 | 4.920 | 0.545 | 100 | 0.090 | 0.795 |
| 79 | 3.930 | 100 | 5.120 | 0.630 | 4.800 | 0.520 | 100 | 0.090 | 0.800 |
| 80 | 3.835 | 100 | 5.120 | 0.635 | 4.735 | 0.505 | 100 | 0.090 | 0.810 |
| 81 | 3.740 | 100 | 5.120 | 0.640 | 4.670 | 0.490 | 100 | 0.090 | 0.820 |
| 82 | 3.690 | 100 | 5.120 | 0.645 | 4.655 | 0.485 | 100 | 0.090 | 0.835 |
| 83 | 3.640 | 100 | 5.120 | 0.650 | 4.640 | 0.480 | 100 | 0.090 | 0.850 |
| 84 | 3.590 | 100 | 5.120 | 0.660 | 4.630 | 0.470 | 100 | 0.090 | 0.870 |
| 85 | 3.540 | 100 | 5.120 | 0.670 | 4.620 | 0.460 | 100 | 0.090 | 0.890 |
| 86 | 3.495 | 100 | 5.120 | 0.675 | 4.610 | 0.450 | 100 | 0.090 | 0.905 |
| 87 | 3.450 | 100 | 5.120 | 0.680 | 4.600 | 0.440 | 100 | 0.090 | 0.920 |
| 88 | 3.410 | 100 | 5.120 | 0.690 | 4.590 | 0.435 | 100 | 0.090 | 0.935 |
| 89 | 3.370 | 100 | 5.120 | 0.700 | 4.580 | 0.430 | 100 | 0.090 | 0.950 |
| 90 | 3.325 | 100 | 5.120 | 0.705 | 4.570 | 0.420 | 100 | 0.090 | 0.970 |
| 91 | 3.280 | 100 | 5.120 | 0.710 | 4.560 | 0.410 | 100 | 0.090 | 0.990 |
| 92 | 3.240 | 100 | 5.120 | 0.710 | 4.550 | 0.400 | 100 | 0.090 | 1.000 |

| *7 | (M3-<br>N1) | (M3-<br>N2) | (M3-<br>01) | (M3-<br>04 5) | (M3-<br>N5) | (M3-<br>N4) | (M3-<br>N6 7) | (M2-<br>N1) | (M2-<br>01) | (M2-<br>04) | (M2-<br>N4) | (M1-<br>N2 3) | (M1-<br>02 3) |
|----|-------------|-------------|-------------|---------------|-------------|-------------|---------------|-------------|-------------|-------------|-------------|---------------|---------------|
| 65 | 26.34       | 0.040       | 4.520       | 0.000         | 100         | 12.36       | 0.510         | 20.17       | 3.520       | 0           | 100         | 100           | 15.81         |
| 66 | 26.35       | 0.045       | 4.460       | 0.000         | 100         | 12.41       | 0.530         | 20.04       | 3.450       | 0           | 100         | 100           | 15.48         |
| 67 | 26.36       | 0.050       | 4.400       | 0.000         | 100         | 12.45       | 0.550         | 19.90       | 3.380       | 0           | 100         | 100           | 15.14         |
| 68 | 26.37       | 0.050       | 4.340       | 0.000         | 100         | 12.49       | 0.570         | 19.77       | 3.315       | 0           | 100         | 100           | 14.84         |
| 69 | 26.37       | 0.050       | 4.280       | 0.000         | 100         | 12.53       | 0.590         | 19.64       | 3.250       | 0           | 100         | 100           | 14.53         |
| 70 | 26.38       | 0.050       | 4.310       | 0.000         | 100         | 12.57       | 0.615         | 19.54       | 3.255       | 0           | 100         | 100           | 14.67         |
| 71 | 26.38       | 0.050       | 4.340       | 0.000         | 100         | 12.60       | 0.640         | 19.44       | 3.260       | 0           | 100         | 100           | 14.80         |
| 72 | 26.39       | 0.055       | 4.450       | 2.755         | 100         | 12.64       | 0.680         | 19.36       | 3.335       | 9.22        | 100         | 100           | 15.39         |
| 73 | 26.39       | 0.060       | 4.560       | 2.860         | 100         | 12.67       | 0.720         | 19.28       | 3.410       | 9.56        | 100         | 100           | 15.97         |
| 74 | 26.39       | 0.060       | 4.670       | 2.965         | 100         | 12.70       | 0.765         | 19.21       | 3.480       | 9.91        | 100         | 100           | 16.58         |
| 75 | 26.39       | 0.060       | 4.780       | 3.070         | 100         | 12.73       | 0.810         | 19.13       | 3.550       | 10.25       | 100         | 100           | 17.19         |
| 76 | 26.39       | 0.060       | 4.900       | 3.175         | 100         | 12.77       | 0.860         | 19.06       | 3.625       | 10.60       | 100         | 100           | 17.83         |
| 77 | 26.39       | 0.060       | 5.020       | 3.280         | 100         | 12.80       | 0.910         | 18.99       | 3.700       | 10.94       | 100         | 100           | 18.46         |
| 78 | 26.40       | 0.065       | 5.135       | 3.395         | 100         | 12.83       | 0.960         | 18.92       | 3.775       | 11.30       | 100         | 100           | 19.13         |
| 79 | 26.40       | 0.070       | 5.250       | 3.510         | 100         | 12.86       | 1.010         | 18.85       | 3.850       | 11.65       | 100         | 100           | 19.79         |
| 80 | 26.49       | 0.070       | 5.375       | 9.480         | 100         | 12.90       | 1.060         | 18.89       | 3.940       | 12.20       | 100         | 100           | 20.42         |
| 81 | 26.57       | 0.070       | 5.500       | 15.450        | 100         | 12.93       | 1.110         | 18.92       | 4.030       | 12.74       | 100         | 100           | 21.05         |
| 82 | 26.75       | 0.075       | 5.630       | 16.365        | 100         | 12.97       | 1.150         | 19.06       | 4.140       | 13.51       | 100         | 100           | 21.63         |
| 83 | 26.92       | 0.080       | 5.760       | 17.280        | 100         | 13.00       | 1.190         | 19.19       | 4.250       | 14.28       | 100         | 100           | 22.21         |
| 84 | 27.10       | 0.080       | 5.890       | 18.280        | 100         | 13.04       | 1.235         | 19.33       | 4.355       | 15.12       | 100         | 100           | 22.80         |
| 85 | 27.27       | 0.080       | 6.020       | 19.280        | 100         | 13.07       | 1.280         | 19.46       | 4.460       | 15.96       | 100         | 100           | 23.39         |
| 86 | 27.44       | 0.080       | 6.155       | 20.365        | 100         | 13.11       | 1.325         | 19.59       | 4.570       | 16.88       | 100         | 100           | 23.99         |
| 87 | 27.61       | 0.080       | 6.290       | 21.450        | 100         | 13.14       | 1.370         | 19.72       | 4.680       | 17.80       | 100         | 100           | 24.59         |
| 88 | 27.78       | 0.085       | 6.430       | 22.625        | 100         | 13.17       | 1.415         | 19.85       | 4.795       | 18.80       | 100         | 100           | 25.21         |
| 89 | 27.94       | 0.090       | 6.570       | 23.800        | 100         | 13.20       | 1.460         | 19.98       | 4.910       | 19.80       | 100         | 100           | 25.82         |
| 90 | 28.11       | 0.090       | 6.710       | 25.075        | 100         | 13.24       | 1.510         | 20.12       | 5.030       | 20.89       | 100         | 100           | 26.44         |
| 91 | 28.28       | 0.090       | 6.850       | 26.350        | 100         | 13.27       | 1.560         | 20.25       | 5.150       | 21.97       | 100         | 100           | 27.06         |
| 92 | 28.44       | 0.090       | 6.990       | 27.710        | 100         | 13.30       | 1.610         | 20.37       | 5.260       | 23.12       | 100         | 100           | 27.69         |

# Table 21: M shell DHS emission rates (part II).

## 10.2.2 DF emission rates

The following two tables for the DF emission rates are stored side by side in file

#### MsubshellDFEmissionRatesat28Feb11.txt.

Please note that Z is included in the second tables only in this Appendix and not in the original file.

| Table 22: M | shell DF | emission | rates ( | (part I) | ). |
|-------------|----------|----------|---------|----------|----|
|-------------|----------|----------|---------|----------|----|

| *Or<br>valı | igin interpo<br>ues | olated  |         |         |         |         |         |         |         |
|-------------|---------------------|---------|---------|---------|---------|---------|---------|---------|---------|
| *DF         | Theory              |         |         |         |         |         |         |         |         |
| *Z          | (M5-N3)             | (M5-N7) | (M5-N6) | (M5-O3) | (M4-N2) | (M4-N3) | (M4-N6) | (M4-O3) | (M4-O2) |
| 65          | 10.460              | 100     | 5.500   | 0.600   | 9.880   | 1.490   | 100     | 0.070   | 0.560   |
| 66          | 9.605               | 100     | 5.735   | 0.545   | 8.805   | 1.310   | 100     | 0.065   | 0.505   |
| 67          | 8.750               | 100     | 5.970   | 0.490   | 7.730   | 1.130   | 100     | 0.060   | 0.450   |
| 68          | 8.050               | 100     | 5.845   | 0.460   | 7.300   | 1.050   | 100     | 0.055   | 0.430   |
| 69          | 7.350               | 100     | 5.720   | 0.430   | 6.870   | 0.970   | 100     | 0.050   | 0.410   |
| 70          | 6.780               | 100     | 5.600   | 0.405   | 6.500   | 0.905   | 100     | 0.045   | 0.390   |
| 71          | 6.210               | 100     | 5.480   | 0.380   | 6.130   | 0.840   | 100     | 0.040   | 0.370   |
| 72          | 5.735               | 100     | 5.370   | 0.355   | 5.810   | 0.785   | 100     | 0.040   | 0.350   |
| 73          | 5.260               | 100     | 5.260   | 0.330   | 5.490   | 0.730   | 100     | 0.040   | 0.330   |
| 74          | 4.990               | 100     | 5.205   | 0.340   | 5.300   | 0.695   | 100     | 0.040   | 0.350   |
| 75          | 4.720               | 100     | 5.150   | 0.350   | 5.110   | 0.660   | 100     | 0.040   | 0.370   |
| 76          | 4.595               | 100     | 5.150   | 0.405   | 5.035   | 0.640   | 100     | 0.050   | 0.430   |
| 77          | 4.470               | 100     | 5.150   | 0.460   | 4.960   | 0.620   | 100     | 0.060   | 0.490   |
| 78          | 4.355               | 100     | 5.145   | 0.520   | 4.885   | 0.600   | 100     | 0.070   | 0.575   |
| 79          | 4.240               | 100     | 5.140   | 0.580   | 4.810   | 0.580   | 100     | 0.080   | 0.660   |
| 80          | 4.155               | 100     | 5.130   | 0.600   | 4.770   | 0.565   | 100     | 0.085   | 0.680   |
| 81          | 4.070               | 100     | 5.120   | 0.620   | 4.730   | 0.550   | 100     | 0.090   | 0.700   |
| 82          | 3.995               | 100     | 5.115   | 0.630   | 4.695   | 0.540   | 100     | 0.090   | 0.725   |
| 83          | 3.920               | 100     | 5.110   | 0.640   | 4.660   | 0.530   | 100     | 0.090   | 0.750   |
| 84          | 3.860               | 100     | 5.115   | 0.655   | 4.630   | 0.520   | 100     | 0.090   | 0.770   |
| 85          | 3.800               | 100     | 5.120   | 0.670   | 4.600   | 0.510   | 100     | 0.090   | 0.790   |
| 86          | 3.750               | 100     | 5.120   | 0.680   | 4.585   | 0.500   | 100     | 0.090   | 0.810   |
| 87          | 3.700               | 100     | 5.120   | 0.690   | 4.570   | 0.490   | 100     | 0.090   | 0.830   |
| 88          | 3.625               | 100     | 5.120   | 0.695   | 4.560   | 0.475   | 100     | 0.090   | 0.845   |
| 89          | 3.550               | 100     | 5.120   | 0.700   | 4.550   | 0.460   | 100     | 0.090   | 0.860   |
| 90          | 3.460               | 100     | 5.115   | 0.690   | 4.525   | 0.445   | 100     | 0.090   | 0.880   |
| 91          | 3.370               | 100     | 5.110   | 0.680   | 4.500   | 0.430   | 100     | 0.090   | 0.900   |
| 92          | 3.280               | 100     | 5.100   | 0.670   | 4.480   | 0.410   | 100     | 0.080   | 0.920   |

| *7 | (M3-<br>N1) | (M3-<br>N2) | (M3-<br>01) | (M3-<br>04 5) | (M3-<br>N5) | (M3-<br>N4) | (M3-<br>N6 7) | (M2-<br>N1) | (M2-<br>01) | (M2-<br>04) | (M2-<br>N4) | (M1-<br>N2 3) | (M1-<br>02 3) |
|----|-------------|-------------|-------------|---------------|-------------|-------------|---------------|-------------|-------------|-------------|-------------|---------------|---------------|
| 65 | 25.880      | 0.040       | 3.920       | 04,0)         | 100         | 12.00       | 0.330         | 20.88       | 3.33        | 04)         | 100         | 100           | 15.68         |
| 66 | 25.900      | 0.045       | 3.870       | 0             | 100         | 12.09       | 0.385         | 20.66       | 3.28        | 0           | 100         | 100           | 15.49         |
| 67 | 25.920      | 0.050       | 3.820       | 0             | 100         | 12.18       | 0.440         | 20.43       | 3.22        | 0           | 100         | 100           | 15.30         |
| 68 | 25.940      | 0.050       | 3.880       | 0             | 100         | 12.25       | 0.485         | 20.29       | 3.25        | 0           | 100         | 100           | 15.59         |
| 69 | 25.950      | 0.050       | 3.940       | 0             | 100         | 12.32       | 0.530         | 20.14       | 3.28        | 0           | 100         | 100           | 15.87         |
| 70 | 25.970      | 0.050       | 4.000       | 0             | 100         | 12.39       | 0.585         | 20.00       | 3.31        | 0           | 100         | 100           | 16.16         |
| 71 | 25.980      | 0.050       | 4.060       | 0             | 100         | 12.45       | 0.640         | 19.86       | 3.34        | 0           | 100         | 100           | 16.45         |
| 72 | 26.000      | 0.055       | 4.120       | 0.550         | 100         | 12.52       | 0.705         | 19.73       | 3.37        | 0.565       | 100         | 100           | 16.74         |
| 73 | 26.010      | 0.060       | 4.180       | 2.050         | 100         | 12.59       | 0.770         | 19.59       | 3.40        | 2.060       | 100         | 100           | 17.03         |
| 74 | 26.020      | 0.060       | 4.255       | 3.550         | 100         | 12.63       | 0.825         | 19.50       | 3.45        | 3.555       | 100         | 100           | 17.43         |
| 75 | 26.030      | 0.060       | 4.330       | 5.050         | 100         | 12.67       | 0.880         | 19.40       | 3.49        | 5.050       | 100         | 100           | 17.83         |
| 76 | 26.040      | 0.060       | 4.420       | 6.550         | 100         | 12.69       | 0.925         | 19.34       | 3.55        | 6.545       | 100         | 100           | 18.35         |
| 77 | 26.040      | 0.060       | 4.510       | 8.050         | 100         | 12.71       | 0.970         | 19.28       | 3.61        | 8.040       | 100         | 100           | 18.87         |
| 78 | 26.050      | 0.065       | 4.600       | 10.360        | 100         | 12.73       | 1.015         | 19.23       | 3.67        | 10.355      | 100         | 100           | 19.41         |
| 79 | 26.050      | 0.070       | 4.690       | 12.670        | 100         | 12.74       | 1.060         | 19.17       | 3.73        | 12.670      | 100         | 100           | 19.94         |
| 80 | 26.100      | 0.070       | 4.825       | 13.785        | 100         | 12.80       | 1.105         | 19.18       | 3.83        | 13.525      | 100         | 100           | 20.53         |
| 81 | 26.150      | 0.070       | 4.960       | 14.900        | 100         | 12.85       | 1.150         | 19.18       | 3.93        | 14.380      | 100         | 100           | 21.11         |
| 82 | 26.230      | 0.070       | 5.095       | 15.930        | 100         | 12.89       | 1.190         | 19.21       | 4.03        | 15.300      | 100         | 100           | 21.73         |
| 83 | 26.300      | 0.070       | 5.230       | 16.960        | 100         | 12.92       | 1.230         | 19.24       | 4.13        | 16.220      | 100         | 100           | 22.34         |
| 84 | 26.400      | 0.075       | 5.365       | 17.825        | 100         | 12.94       | 1.275         | 19.30       | 4.23        | 17.195      | 100         | 100           | 23.00         |
| 85 | 26.500      | 0.080       | 5.500       | 18.690        | 100         | 12.95       | 1.320         | 19.36       | 4.33        | 18.170      | 100         | 100           | 23.65         |
| 86 | 26.650      | 0.080       | 5.635       | 19.605        | 100         | 12.98       | 1.365         | 19.45       | 4.45        | 19.140      | 100         | 100           | 24.25         |
| 87 | 26.790      | 0.080       | 5.770       | 20.520        | 100         | 13.01       | 1.410         | 19.54       | 4.56        | 20.110      | 100         | 100           | 24.85         |
| 88 | 27.060      | 0.085       | 5.935       | 21.195        | 100         | 13.07       | 1.460         | 19.74       | 4.67        | 20.775      | 100         | 100           | 25.28         |
| 89 | 27.330      | 0.090       | 6.100       | 21.870        | 100         | 13.12       | 1.510         | 19.93       | 4.78        | 21.440      | 100         | 100           | 25.71         |
| 90 | 27.690      | 0.090       | 6.285       | 22.290        | 100         | 13.18       | 1.570         | 20.19       | 4.88        | 21.840      | 100         | 100           | 26.03         |
| 91 | 28.050      | 0.090       | 6.470       | 22.710        | 100         | 13.24       | 1.630         | 20.45       | 4.98        | 22.240      | 100         | 100           | 26.34         |
| 92 | 28.400      | 0.100       | 6.670       | 23.140        | 100         | 13.30       | 1.690         | 20.71       | 5.08        | 22.650      | 100         | 100           | 26.65         |

# Table 23: M shell DF emission rates (part II).

#### 10.3 M shell Fluorescence Yield

The M shell fluorescence yields were obtained from Chauhan and Puri (2008) and are stored in file

#### MsubshellFluorescenceyldswisat31Mar11.txt.

## Table 24: M shell fluorescence yield.

| *Y ( | Chauhan,   | hauhan, S. Puri, Atomic Data and Nuclear data Tables 94-2008 38-49. |           |         |         |        |         |         |         |         |         |         |         |  |
|------|------------|---------------------------------------------------------------------|-----------|---------|---------|--------|---------|---------|---------|---------|---------|---------|---------|--|
| *M : | subshell f | luorescen                                                           | ce yields | wi      |         |        |         |         |         |         |         |         |         |  |
|      |            |                                                                     |           |         |         | ωMbar  |         |         |         |         |         | ωMbar   | ωMbar   |  |
| *Z   | ω1(DF)     | ω2(DF)                                                              | ω3(DF)    | ω4(DF)  | ω5(DF)  | (DF)   | ω1(DHS) | ω2(DHS) | ω3(DHS) | ω4(DHS) | ω5(DHS) | (DHS)   | Exptfit |  |
| 65   | -99        | -99                                                                 | -99       | -99     | -99     | 0.0103 | -99     | -99     | -99     | -99     | -99     | 0.0119  | 0.01107 |  |
| 66   | -99        | -99                                                                 | -99       | -99     | -99     | 0.0115 | -99     | -99     | -99     | -99     | -99     | 0.0125  | 0.01153 |  |
| 67   | 0.00115    | 0.00196                                                             | 0.00194   | 0.00816 | 0.01168 | 0.0129 | 0.00099 | 0.00172 | 0.00168 | 0.00819 | 0.01240 | 0.01330 | 0.01213 |  |
| 68   | 0.00122    | 0.00208                                                             | 0.00212   | 0.00869 | 0.01278 | 0.0140 | 0.00105 | 0.00181 | 0.00183 | 0.00858 | 0.01330 | 0.01410 | 0.01287 |  |
| 69   | 0.00130    | 0.00221                                                             | 0.00230   | 0.00924 | 0.01396 | 0.0151 | 0.00111 | 0.00191 | 0.00198 | 0.00899 | 0.01410 | 0.01490 | 0.01374 |  |
| 70   | 0.00138    | 0.00235                                                             | 0.00250   | 0.00981 | 0.01524 | 0.0164 | 0.00118 | 0.00201 | 0.00215 | 0.00940 | 0.01500 | 0.01590 | 0.01473 |  |
| 71   | 0.00146    | 0.00246                                                             | 0.00269   | 0.01042 | 0.01661 | 0.0177 | 0.00125 | 0.00213 | 0.00233 | 0.00983 | 0.01590 | 0.01670 | 0.01584 |  |
| 72   | 0.00166    | 0.00258                                                             | 0.00289   | 0.01105 | 0.01808 | 0.0191 | 0.00141 | 0.00225 | 0.00252 | 0.01027 | 0.01690 | 0.01770 | 0.01706 |  |
| 73   | 0.00177    | 0.00270                                                             | 0.00310   | 0.01171 | 0.01966 | 0.0206 | 0.00152 | 0.00238 | 0.00272 | 0.01071 | 0.01790 | 0.01870 | 0.01838 |  |
| 74   | 0.00189    | 0.00283                                                             | 0.00332   | 0.02212 | 0.02135 | 0.0225 | 0.00163 | 0.00252 | 0.00294 | 0.02000 | 0.01900 | 0.02010 | 0.01979 |  |
| 75   | 0.00201    | 0.00302                                                             | 0.00420   | 0.02328 | 0.02241 | 0.0235 | 0.00175 | 0.00267 | 0.00373 | 0.02119 | 0.02020 | 0.02130 | 0.02128 |  |
| 76   | 0.00214    | 0.00322                                                             | 0.00450   | 0.02449 | 0.02351 | 0.0246 | 0.00185 | 0.00284 | 0.00400 | 0.02244 | 0.02140 | 0.02240 | 0.02286 |  |
| 77   | 0.00228    | 0.00342                                                             | 0.00481   | 0.02575 | 0.02465 | 0.0259 | 0.00199 | 0.00300 | 0.00429 | 0.02374 | 0.02270 | 0.02380 | 0.02450 |  |
| 78   | 0.00243    | 0.00364                                                             | 0.00516   | 0.02704 | 0.02583 | 0.0272 | 0.00214 | 0.00318 | 0.00460 | 0.02510 | 0.02410 | 0.02520 | 0.02620 |  |
| 79   | 0.00259    | 0.00391                                                             | 0.00551   | 0.02839 | 0.02704 | 0.0286 | 0.00230 | 0.00342 | 0.00493 | 0.02652 | 0.02550 | 0.02670 | 0.02796 |  |
| 80   | 0.00277    | 0.00416                                                             | 0.00586   | 0.02968 | 0.02816 | 0.0298 | 0.00247 | 0.00368 | 0.00527 | 0.02800 | 0.02700 | 0.02830 | 0.02977 |  |
| 81   | 0.00296    | 0.00449                                                             | 0.00627   | 0.03109 | 0.02954 | 0.0313 | 0.00265 | 0.00397 | 0.00563 | 0.02960 | 0.02830 | 0.02980 | 0.03161 |  |
| 82   | 0.00317    | 0.00485                                                             | 0.00671   | 0.03251 | 0.03096 | 0.0326 | 0.00283 | 0.00428 | 0.00566 | 0.03126 | 0.02960 | 0.03090 | 0.03348 |  |
| 83   | 0.00340    | 0.00523                                                             | 0.00715   | 0.03392 | 0.03233 | 0.0341 | 0.00303 | 0.00461 | 0.00619 | 0.03300 | 0.03100 | 0.03260 | 0.03538 |  |
| 84   | 0.00364    | 0.00564                                                             | 0.00763   | 0.03554 | 0.03386 | 0.0358 | 0.00324 | 0.00497 | 0.00677 | 0.03484 | 0.03230 | 0.03430 | 0.03729 |  |
| 85   | 0.00389    | 0.00607                                                             | 0.00812   | 0.03722 | 0.03543 | 0.0376 | 0.00346 | 0.00534 | 0.00739 | 0.03675 | 0.03370 | 0.03600 | 0.03921 |  |
| 86   | 0.00420    | 0.00644                                                             | 0.00881   | 0.03894 | 0.03707 | 0.0393 | 0.00376 | 0.00567 | 0.00806 | 0.03875 | 0.03510 | 0.03780 | 0.04113 |  |

| 87 | 0.00452 | 0.00681 | 0.00955 | 0.04062 | 0.03865 | 0.0411 | 0.00408 | 0.00602 | 0.00878 | 0.04083 | 0.03650 | 0.03960 | 0.04304 |
|----|---------|---------|---------|---------|---------|--------|---------|---------|---------|---------|---------|---------|---------|
| 88 | 0.00487 | 0.00721 | 0.01034 | 0.04235 | 0.04028 | 0.0429 | 0.00443 | 0.00638 | 0.00956 | 0.04300 | 0.03800 | 0.04140 | 0.04494 |
| 89 | 0.00506 | 0.00751 | 0.01128 | 0.04358 | 0.04164 | 0.0442 | 0.00462 | 0.00683 | 0.01054 | 0.04468 | 0.03970 | 0.04320 | 0.04681 |
| 90 | 0.00529 | 0.00781 | 0.01228 | 0.04483 | 0.04304 | 0.0458 | 0.00497 | 0.00731 | 0.01160 | 0.04641 | 0.04140 | 0.04510 | 0.04865 |
| 91 | 0.00553 | 0.00815 | 0.01276 | 0.04611 | 0.04446 | 0.0473 | 0.00534 | 0.00783 | 0.01228 | 0.04818 | 0.04320 | 0.04710 | 0.05045 |
| 92 | 0.00578 | 0.00850 | 0.01326 | 0.04742 | 0.04592 | 0.0488 | 0.00573 | 0.00838 | 0.01300 | 0.05000 | 0.04500 | 0.04910 | 0.05221 |

#### 10.4 M shell Coster-Kronig probabilities

Super Coster-Kronig probabilities, sourced from Bambynek et al. (1972) are stored in file

#### MsubshellSuperSijBambynekat4Mar11.txt

and the Coster-Kronig probabilities, sourced from Chauhan and Puri (2008) are stored in file

#### MsubshellCKfijsat28Feb11.txt.

#### 10.4.1 File MsubshellSuperSijBambynekat4Mar11.txt

#### Table 25: M shell Super Coster-Kronig probabilities.

| *Or | igin Interp | olated Ban | nbynek Su | per CK tra | nsitions |        |        |        |        |        |
|-----|-------------|------------|-----------|------------|----------|--------|--------|--------|--------|--------|
| *   |             |            |           |            |          |        |        |        |        |        |
| *Z  | S12         | S13        | S14       | S15        | S23      | S24    | S25    | S34    | S35    | f45    |
| *   |             |            |           |            |          |        |        |        |        |        |
| 65  | 0.3020      | 0.5060     | 0.0655    | 0.0950     | 0.0840   | 0.5905 | 0.1285 | 0.1550 | 0.7355 | 0.3885 |
| 66  | 0.2840      | 0.5165     | 0.0633    | 0.0925     | 0.0950   | 0.6288 | 0.1243 | 0.1500 | 0.7433 | 0.3983 |
| 67  | 0.2660      | 0.5270     | 0.0610    | 0.0900     | 0.1060   | 0.6670 | 0.1200 | 0.1450 | 0.7510 | 0.4080 |
| 68  | 0.2680      | 0.5263     | 0.0593    | 0.0903     | 0.1093   | 0.6713 | 0.1150 | 0.1437 | 0.7543 | 0.4317 |
| 69  | 0.2700      | 0.5257     | 0.0577    | 0.0907     | 0.1127   | 0.6757 | 0.1100 | 0.1423 | 0.7577 | 0.4553 |
| 70  | 0.2720      | 0.5250     | 0.0560    | 0.0910     | 0.1160   | 0.6800 | 0.1050 | 0.1410 | 0.7610 | 0.4790 |
| 71  | 0.2470      | 0.5370     | 0.0590    | 0.0990     | 0.1153   | 0.6780 | 0.1053 | 0.1213 | 0.7773 | 0.4563 |
| 72  | 0.2220      | 0.5490     | 0.0620    | 0.1070     | 0.1147   | 0.6760 | 0.1057 | 0.1017 | 0.7937 | 0.4337 |
| 73  | 0.1970      | 0.5610     | 0.0650    | 0.1150     | 0.1140   | 0.6740 | 0.1060 | 0.0820 | 0.8100 | 0.4110 |
| 74  | 0.1850      | 0.5720     | 0.0657    | 0.1130     | 0.1117   | 0.6773 | 0.1033 | 0.0900 | 0.7947 | 0.4133 |
| 75  | 0.1730      | 0.5830     | 0.0663    | 0.1110     | 0.1093   | 0.6807 | 0.1007 | 0.0980 | 0.7793 | 0.4157 |
| 76  | 0.1610      | 0.5940     | 0.0670    | 0.1090     | 0.1070   | 0.6840 | 0.0980 | 0.1060 | 0.7640 | 0.4180 |
| 77  | 0.1567      | 0.5940     | 0.0670    | 0.1100     | 0.1093   | 0.6803 | 0.0970 | 0.1087 | 0.7700 | 0.2940 |
| 78  | 0.1523      | 0.5940     | 0.0670    | 0.1110     | 0.1117   | 0.6767 | 0.0960 | 0.1113 | 0.7760 | 0.1700 |
| 79  | 0.1480      | 0.5940     | 0.0670    | 0.1120     | 0.1140   | 0.6730 | 0.0950 | 0.1140 | 0.7820 | 0.0460 |
| 80  | 0.1383      | 0.6080     | 0.0665    | 0.1078     | 0.1113   | 0.6703 | 0.0920 | 0.1090 | 0.7740 | 0.0433 |
| 81  | 0.1285      | 0.6220     | 0.0660    | 0.1035     | 0.1085   | 0.6675 | 0.0890 | 0.1040 | 0.7660 | 0.0405 |
| 82  | 0.1188      | 0.6360     | 0.0655    | 0.0993     | 0.1058   | 0.6648 | 0.0860 | 0.0990 | 0.7580 | 0.0378 |

| 83 | 0.1090 | 0.6500 | 0.0650 | 0.0950 | 0.1030 | 0.6620 | 0.0830 | 0.0940 | 0.7500 | 0.0350 |
|----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 84 | 0.1203 | 0.6310 | 0.0663 | 0.0967 | 0.1113 | 0.6447 | 0.0863 | 0.0867 | 0.7560 | 0.0450 |
| 85 | 0.1317 | 0.6120 | 0.0677 | 0.0983 | 0.1197 | 0.6273 | 0.0897 | 0.0793 | 0.7620 | 0.0550 |
| 86 | 0.1430 | 0.5930 | 0.0690 | 0.1000 | 0.1280 | 0.6100 | 0.0930 | 0.0720 | 0.7680 | 0.0650 |
| 87 | 0.1253 | 0.6173 | 0.0675 | 0.0978 | 0.1250 | 0.6133 | 0.0918 | 0.0783 | 0.7573 | 0.0653 |
| 88 | 0.1075 | 0.6415 | 0.0660 | 0.0955 | 0.1220 | 0.6165 | 0.0905 | 0.0845 | 0.7465 | 0.0655 |
| 89 | 0.0898 | 0.6658 | 0.0645 | 0.0933 | 0.1190 | 0.6198 | 0.0893 | 0.0908 | 0.7358 | 0.0658 |
| 90 | 0.0720 | 0.6900 | 0.0630 | 0.0910 | 0.1160 | 0.6230 | 0.0880 | 0.0970 | 0.7250 | 0.0660 |
| 91 | 0.0543 | 0.7143 | 0.0615 | 0.0888 | 0.1130 | 0.6263 | 0.0868 | 0.1033 | 0.7143 | 0.0663 |
| 92 | 0.0365 | 0.7385 | 0.0600 | 0.0865 | 0.1100 | 0.6295 | 0.0855 | 0.1095 | 0.7035 | 0.0665 |

## 10.4.2 File MsubshellCKfijsat28Feb11.txt

# Table 26: M shell Coster-Kronig probabilities.

| * Y ( | Chauhan,   | S. Puri, At | tomic Data | a and Nuc | lear data 7 | Tables 94- | 2008 38-49 | Э.    |       |       |
|-------|------------|-------------|------------|-----------|-------------|------------|------------|-------|-------|-------|
| *M s  | subshell C | :K fij      |            |           |             |            |            |       |       |       |
| *     |            |             |            |           |             |            |            |       |       |       |
| *Z    | f12        | f13         | f14        | f15       | f23         | f24        | f25        | f34   | f35   | f45   |
| 67    | 0.292      | 0.609       | 0.082      | 0.114     | 0.099       | 0.691      | 0.136      | 0.144 | 0.755 | 0.388 |
| 68    | 0.250      | 0.613       | 0.081      | 0.114     | 0.103       | 0.705      | 0.133      | 0.146 | 0.749 | 0.399 |
| 69    | 0.215      | 0.617       | 0.081      | 0.113     | 0.106       | 0.719      | 0.131      | 0.147 | 0.742 | 0.409 |
| 70    | 0.185      | 0.621       | 0.080      | 0.113     | 0.110       | 0.733      | 0.128      | 0.149 | 0.736 | 0.420 |
| 71    | 0.160      | 0.625       | 0.082      | 0.115     | 0.109       | 0.726      | 0.125      | 0.129 | 0.748 | 0.431 |
| 72    | 0.146      | 0.628       | 0.083      | 0.117     | 0.107       | 0.720      | 0.121      | 0.113 | 0.760 | 0.442 |
| 73    | 0.144      | 0.632       | 0.085      | 0.119     | 0.106       | 0.713      | 0.118      | 0.098 | 0.772 | 0.453 |
| 74    | 0.142      | 0.635       | 0.086      | 0.121     | 0.105       | 0.707      | 0.115      | 0.086 | 0.784 | 0.039 |
| 75    | 0.140      | 0.638       | 0.086      | 0.121     | 0.106       | 0.702      | 0.113      | 0.090 | 0.739 | 0.041 |
| 76    | 0.138      | 0.589       | 0.087      | 0.121     | 0.106       | 0.697      | 0.111      | 0.093 | 0.737 | 0.042 |
| 77    | 0.137      | 0.589       | 0.087      | 0.121     | 0.107       | 0.692      | 0.110      | 0.097 | 0.736 | 0.044 |
| 78    | 0.135      | 0.589       | 0.087      | 0.121     | 0.107       | 0.687      | 0.108      | 0.101 | 0.734 | 0.045 |
| 79    | 0.132      | 0.589       | 0.088      | 0.122     | 0.106       | 0.688      | 0.107      | 0.100 | 0.732 | 0.047 |
| 80    | 0.130      | 0.589       | 0.088      | 0.122     | 0.105       | 0.688      | 0.107      | 0.100 | 0.731 | 0.049 |
| 81    | 0.126      | 0.591       | 0.089      | 0.122     | 0.105       | 0.685      | 0.108      | 0.100 | 0.733 | 0.052 |

| 82 | 0.121 | 0.592 | 0.089 | 0.123 | 0.105 | 0.682 | 0.109 | 0.066 | 0.735 | 0.054 |
|----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 83 | 0.117 | 0.594 | 0.090 | 0.123 | 0.106 | 0.679 | 0.110 | 0.067 | 0.738 | 0.057 |
| 84 | 0.114 | 0.595 | 0.090 | 0.124 | 0.106 | 0.677 | 0.111 | 0.068 | 0.740 | 0.058 |
| 85 | 0.110 | 0.597 | 0.091 | 0.124 | 0.106 | 0.674 | 0.112 | 0.069 | 0.742 | 0.059 |
| 86 | 0.107 | 0.603 | 0.093 | 0.126 | 0.105 | 0.671 | 0.112 | 0.070 | 0.733 | 0.060 |
| 87 | 0.104 | 0.609 | 0.094 | 0.127 | 0.103 | 0.669 | 0.111 | 0.071 | 0.725 | 0.061 |
| 88 | 0.101 | 0.615 | 0.096 | 0.129 | 0.102 | 0.666 | 0.111 | 0.072 | 0.717 | 0.062 |
| 89 | 0.077 | 0.612 | 0.096 | 0.129 | 0.102 | 0.664 | 0.112 | 0.075 | 0.701 | 0.068 |
| 90 | 0.078 | 0.610 | 0.096 | 0.129 | 0.102 | 0.663 | 0.114 | 0.078 | 0.686 | 0.074 |
| 91 | 0.079 | 0.607 | 0.097 | 0.129 | 0.102 | 0.661 | 0.113 | 0.076 | 0.684 | 0.081 |
| 92 | 0.080 | 0.605 | 0.097 | 0.129 | 0.102 | 0.659 | 0.113 | 0.075 | 0.683 | 0.088 |

#### 10.5 M shell characteristic X-ray energies

The M shell X-ray energies have been calculated from the electron binding energies (obtained from the Lawrence Berkeley National Labs). The resulting energies (keV) are stored in the file

#### MlineEnergies\_Calculated.txt.

#### Table 27: M shell characteristic X-ray energies.

| *Z | M5-N3  | M5-N7  | M5-N6  | M5-O3  | M4-N2  | M4-N3  | M4-N6  | M4-O3  | M4-O2  | M3-N1  | M3-N2  | M3-01  | M3-O45 | M3-N5  | M3-N4  | M3-N67 | M2-N1  | M2-01  | M2-O4 | M2-N4  | M1-N23 | M1-O23 |
|----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|--------|--------|--------|
| 64 | 0.9186 | 1.1810 | 1.1810 | 1.1686 | 0.9359 | 0.9509 | 1.2133 | 1.2009 | 1.1939 | 1.1654 | 1.2580 | 1.5080 | -99    | 1.4014 | 1.4023 | 1.5354 | 1.3094 | 1.6520 | -99   | 1.5463 | 1.6025 | 1.8565 |
| 65 | 0.9570 | 1.2387 | 1.2334 | 1.2185 | 0.9545 | 0.9928 | 1.2692 | 1.2543 | 1.2482 | 1.2150 | 1.2886 | 1.5654 | -99    | 1.4605 | 1.4605 | 1.6060 | 1.3720 | 1.7224 | -99   | 1.6175 | 1.6648 | 1.9424 |
| 66 | 0.9994 | 1.2883 | 1.2846 | 1.2663 | 0.9995 | 1.0398 | 1.3250 | 1.3067 | 1.3067 | 1.2618 | 1.3425 | 1.6261 | -99    | 1.5224 | 1.5224 | 1.6699 | 1.4278 | 1.7921 | -99   | 1.6884 | 1.7337 | 2.0207 |
| 67 | 1.0428 | 1.3458 | 1.3424 | 1.3269 | 1.0485 | 1.0838 | 1.3834 | 1.3679 | 1.3612 | 1.3086 | 1.3975 | 1.6917 | -99    | 1.5810 | 1.5810 | 1.7341 | 1.4906 | 1.8737 | -99   | 1.7630 | 1.8022 | 2.1006 |
| 68 | 1.0888 | 1.4043 | 1.4008 | 1.3843 | 1.0868 | 1.1328 | 1.4448 | 1.4283 | 1.4216 | 1.3622 | 1.4458 | 1.7614 | -99    | 1.6444 | 1.6444 | 1.8056 | 1.5562 | 1.9554 | -99   | 1.8384 | 1.8638 | 2.1790 |
| 69 | 1.1354 | 1.4634 | 1.4643 | 1.4430 | 1.1291 | 1.1824 | 1.5113 | 1.4900 | 1.4832 | 1.4141 | 1.4991 | 1.8303 | -99    | 1.7095 | 1.7095 | 1.8809 | 1.6191 | 2.0353 | -99   | 1.9145 | 1.9478 | 2.2786 |
| 70 | 1.1883 | 1.5267 | 1.5255 | 1.5039 | 1.1873 | 1.2363 | 1.5735 | 1.5519 | 1.5457 | 1.4695 | 1.5613 | 1.8980 | -99    | 1.7676 | 1.7588 | 1.9481 | 1.6925 | 2.1210 | -99   | 1.9818 | 2.0338 | 2.3708 |
| 71 | 1.2298 | 1.5815 | 1.5801 | 1.5623 | 1.2266 | 1.2798 | 1.6301 | 1.6123 | 1.6054 | 1.5172 | 1.6116 | 1.9667 | -99    | 1.8277 | 1.8179 | 2.0158 | 1.7572 | 2.2067 | -99   | 2.0579 | 2.1052 | 2.4609 |
| 72 | 1.2813 | 1.6478 | 1.6461 | 1.6321 | 1.2778 | 1.3353 | 1.7001 | 1.6861 | 1.6780 | 1.5700 | 1.6698 | 2.0438 | -99    | 1.8965 | 1.8880 | 2.0930 | 1.8270 | 2.3008 | -99   | 2.1450 | 2.1916 | 2.5671 |
| 73 | 1.3341 | 1.7134 | 1.7115 | 1.7023 | 1.3296 | 1.3921 | 1.7695 | 1.7603 | 1.7508 | 1.6306 | 1.7306 | 2.1243 | -99    | 1.9676 | 1.9561 | 2.1715 | 1.9056 | 2.3993 | -99   | 2.2311 | 2.2759 | 2.6706 |
| 74 | 1.3854 | 1.7776 | 1.7754 | 1.7722 | 1.3816 | 1.4484 | 1.8384 | 1.8352 | 1.8267 | 1.6869 | 1.7906 | 2.2054 | -99    | 2.0375 | 2.0251 | 2.2485 | 1.9809 | 2.4994 | -99   | 2.3191 | 2.3630 | 2.7790 |
| 75 | 1.4362 | 1.8425 | 1.8401 | 1.8484 | 1.4303 | 1.5022 | 1.9061 | 1.9144 | 1.9034 | 1.7416 | 1.8483 | 2.2840 | -99    | 2.1065 | 2.0931 | 2.3253 | 2.0566 | 2.5990 | -99   | 2.4081 | 2.4493 | 2.8919 |

| 76 | 1.4893 | 1.9093 | 1.9066 | 1.9155 | 1.4819 | 1.5603 | 1.9776 | 1.9865 | 1.9730 | 1.7988 | 1.9079 | 2.3730 | -99    | 2.1785 | 2.1639 | 2.4050 | 2.1338 | 2.7080 | -99    | 2.4989 | 2.5391 | 2.9978 |
|----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 77 | 1.5442 | 1.9792 | 1.9762 | 1.9920 | 1.5382 | 1.6202 | 2.0522 | 2.0680 | 2.0530 | 1.8599 | 1.9732 | 2.4558 | -99    | 2.2547 | 2.2391 | 2.4887 | 2.2179 | 2.8138 | -99    | 2.5971 | 2.6372 | 3.1185 |
| 78 | 1.6026 | 2.0508 | 2.0475 | 2.0703 | 1.5929 | 1.6826 | 2.1275 | 2.1503 | 2.1367 | 1.9196 | 2.0359 | 2.5433 | -99    | 2.3304 | 2.3134 | 2.5722 | 2.3016 | 2.9253 | -99    | 2.6954 | 2.7318 | 3.2375 |
| 79 | 1.6597 | 2.1220 | 2.1184 | 2.1488 | 1.6483 | 1.7447 | 2.2034 | 2.2338 | 2.2168 | 1.9809 | 2.1003 | 2.6358 | -99    | 2.4079 | 2.3898 | 2.6572 | 2.3859 | 3.0408 | -99    | 2.7948 | 2.8305 | 3.3593 |
| 80 | 1.7184 | 2.1951 | 2.1910 | 2.2305 | 1.7048 | 1.8084 | 2.2810 | 2.3205 | 2.3019 | 2.0448 | 2.1668 | 2.7200 | 2.8383 | 2.4882 | 2.4688 | 2.7451 | 2.4768 | 3.1520 | 3.2694 | 2.9008 | 2.9336 | 3.4882 |
| 81 | 1.7795 | 2.2712 | 2.2668 | 2.3155 | 1.7645 | 1.8755 | 2.3628 | 2.4115 | 2.3904 | 2.1108 | 2.2365 | 2.8210 | 2.9434 | 2.5720 | 2.5513 | 2.8370 | 2.5698 | 3.2800 | 3.4013 | 3.0103 | 3.0390 | 3.6200 |
| 82 | 1.8405 | 2.3471 | 2.3423 | 2.4007 | 1.8241 | 1.9425 | 2.4443 | 2.5027 | 2.4796 | 2.1742 | 2.3041 | 2.9190 | 3.0466 | 2.6538 | 2.6317 | 2.9267 | 2.6622 | 3.4070 | 3.5333 | 3.1197 | 3.1483 | 3.7562 |
| 83 | 1.9012 | 2.4230 | 2.4177 | 2.4874 | 1.8828 | 2.0092 | 2.5257 | 2.5954 | 2.5690 | 2.2380 | 2.3718 | 3.0177 | 3.1517 | 2.7369 | 2.7130 | 3.0174 | 2.7570 | 3.5367 | 3.6691 | 3.2320 | 3.2570 | 3.8932 |
| 84 | 1.9780 | 2.4990 | 2.4990 | 2.5790 | 1.9470 | 2.0930 | 2.6140 | 2.6940 | 2.6660 | 2.3070 | 2.4510 | 3.1250 | 3.2710 | 2.8290 | 2.8020 | 3.1180 | 2.8590 | 3.6770 | 3.8230 | 3.3540 | 3.3710 | 4.0310 |
| 85 | 2.0470 | 2.5770 | 2.5770 | 2.6720 | 2.0230 | 2.1690 | 2.6990 | 2.7940 | 2.7610 | 2.3840 | 2.5400 | 3.2310 | 3.3860 | 2.9190 | 2.8930 | 3.2160 | 2.9660 | 3.8130 | 3.9680 | 3.4750 | 3.5040 | 4.1855 |
| 86 | 2.1240 | 2.6540 | 2.6540 | 2.7650 | 2.0930 | 2.2540 | 2.7840 | 2.8950 | 2.8580 | 2.4410 | 2.6090 | 3.3240 | 3.4900 | 2.9970 | 2.9710 | 3.3000 | 3.0620 | 3.9450 | 4.1110 | 3.5920 | 3.6335 | 4.3365 |
| 87 | 2.1900 | 2.7320 | 2.7320 | 2.8600 | 2.1560 | 2.3260 | 2.8680 | 2.9960 | 2.9540 | 2.5100 | 2.6830 | 3.4290 | 3.6050 | 3.0860 | 3.0600 | 3.3950 | 3.1740 | 4.0930 | 4.2690 | 3.7240 | 3.7570 | 4.4910 |
| 88 | 2.2260 | 2.8060 | 2.8060 | 2.9520 | 2.1900 | 2.3690 | 2.9490 | 3.0950 | 3.0480 | 2.5840 | 2.7340 | 3.5380 | 3.7240 | 3.1890 | 3.1560 | 3.4930 | 3.2820 | 4.2360 | 4.4220 | 3.8540 | 3.8535 | 4.6455 |
| 89 | 2.3290 | 2.9000 | 2.9000 | 3.0520 | 2.2900 | 2.4800 | 3.0510 | 3.2030 | 3.1550 | 2.6400 | 2.8290 | 3.6370 | 3.8290 | 3.2700 | 3.2340 | 3.5900 | 3.3870 | 4.3840 | 4.5760 | 3.9810 | 4.0170 | 4.8110 |
| 90 | 2.3656 | 2.9989 | 2.9896 | 3.1500 | 2.3230 | 2.5246 | 3.1486 | 3.3090 | 3.2620 | 2.7160 | 2.8780 | 3.7560 | 3.9571 | 3.3708 | 3.3339 | 3.7083 | 3.5000 | 4.5400 | 4.7375 | 4.1179 | 4.1148 | 4.9765 |
| 91 | 2.4350 | 3.0820 | 3.0710 | 3.2100 | 2.3870 | 2.6040 | 3.2400 | 3.3790 | 3.3790 | 2.7870 | 2.9500 | 3.8640 | 4.0800 | 3.4660 | 3.4310 | 3.8085 | 3.6140 | 4.6910 | 4.9070 | 4.2580 | 4.2515 | 5.1350 |
| 92 | 2.5090 | 3.1746 | 3.1638 | 3.3600 | 2.4570 | 2.6850 | 3.3398 | 3.5360 | 3.4710 | 2.8640 | 3.0320 | 3.9820 | 4.2045 | 3.5668 | 3.5247 | 3.9202 | 3.7430 | 4.8610 | 5.0792 | 4.4037 | 4.3910 | 5.3235 |

The electron binding energies (below) are stored in file

#### ElectronBindingEnergiesLBLabsZ64\_92.txt.

All X-ray energies are in keV.

## Table 28: Electron binding energies in keV (part I).

| Elt | Ζ  | K      | L1     | L2     | L3    | M1     | M2     | M3     | M4     | M5     | N1     | N2     | N3     | N4     | N5     | N6     | N7     |
|-----|----|--------|--------|--------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Gd  | 64 | 50.239 | 8.376  | 7.930  | 7.243 | 1.8810 | 1.6880 | 1.5440 | 1.2219 | 1.1896 | 0.3786 | 0.2860 | 0.2710 | 0.1418 | 0.1426 | 0.0086 | 0.0086 |
| Т   | 65 | 51.996 | 8.708  | 8.252  | 7.514 | 1.9680 | 1.7680 | 1.6110 | 1.2769 | 1.2411 | 0.3960 | 0.3224 | 0.2841 | 0.1505 | 0.1505 | 0.0077 | 0.0024 |
| Dy  | 66 | 53.789 | 9.046  | 8.581  | 7.790 | 2.0470 | 1.8420 | 1.6760 | 1.3330 | 1.2926 | 0.4142 | 0.3335 | 0.2932 | 0.1536 | 0.1536 | 0.0080 | 0.0043 |
| Но  | 67 | 55.618 | 9.394  | 8.918  | 8.071 | 2.1280 | 1.9230 | 1.7410 | 1.3920 | 1.3510 | 0.4324 | 0.3435 | 0.3082 | 0.1600 | 0.1600 | 0.0086 | 0.0052 |
| Er  | 68 | 57.486 | 9.751  | 9.264  | 8.358 | 2.2070 | 2.0060 | 1.8120 | 1.4530 | 1.4090 | 0.4498 | 0.3662 | 0.3202 | 0.1676 | 0.1676 | 0.0082 | 0.0047 |
| Tm  | 69 | 59.390 | 10.116 | 9.617  | 8.648 | 2.3070 | 2.0900 | 1.8850 | 1.5150 | 1.4680 | 0.4709 | 0.3859 | 0.3326 | 0.1755 | 0.1755 | 0.0037 | 0.0046 |
| Υ   | 70 | 61.332 | 10.486 | 9.978  | 8.944 | 2.3980 | 2.1730 | 1.9500 | 1.5760 | 1.5280 | 0.4805 | 0.3887 | 0.3397 | 0.1912 | 0.1824 | 0.0025 | 0.0013 |
| Lu  | 71 | 63.314 | 10.870 | 10.349 | 9.244 | 2.4910 | 2.2640 | 2.0240 | 1.6390 | 1.5890 | 0.5068 | 0.4124 | 0.3592 | 0.2061 | 0.1963 | 0.0089 | 0.0075 |

| Hf | 72 | 65.351  | 11.271 | 10.739 | 9.561  | 2.6010 | 2.3650 | 2.1080 | 1.7160 | 1.6620 | 0.5380 | 0.4382 | 0.3807 | 0.2200 | 0.2115 | 0.0159 | 0.0142 |
|----|----|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Та | 73 | 67.416  | 11.682 | 11.136 | 9.881  | 2.7080 | 2.4690 | 2.1940 | 1.7930 | 1.7350 | 0.5634 | 0.4634 | 0.4009 | 0.2379 | 0.2264 | 0.0235 | 0.0216 |
| W  | 74 | 69.525  | 12.100 | 11.544 | 10.207 | 2.8200 | 2.5750 | 2.2810 | 1.8720 | 1.8090 | 0.5941 | 0.4904 | 0.4236 | 0.2559 | 0.2435 | 0.0336 | 0.0314 |
| Re | 75 | 71.676  | 12.527 | 11.959 | 10.535 | 2.9320 | 2.6820 | 2.3670 | 1.9490 | 1.8830 | 0.6254 | 0.5187 | 0.4468 | 0.2739 | 0.2605 | 0.0429 | 0.0405 |
| Os | 76 | 73.871  | 12.968 | 12.385 | 10.871 | 3.0490 | 2.7920 | 2.4570 | 2.0310 | 1.9600 | 0.6582 | 0.5491 | 0.4707 | 0.2931 | 0.2785 | 0.0534 | 0.0507 |
| Ir | 77 | 76.111  | 13.419 | 12.824 | 11.215 | 3.1740 | 2.9090 | 2.5510 | 2.1160 | 2.0400 | 0.6911 | 0.5778 | 0.4958 | 0.3119 | 0.2963 | 0.0638 | 0.0608 |
| Pt | 78 | 78.395  | 13.880 | 13.273 | 11.564 | 3.2960 | 3.0270 | 2.6450 | 2.2020 | 2.1220 | 0.7254 | 0.6091 | 0.5194 | 0.3316 | 0.3146 | 0.0745 | 0.0712 |
| Au | 79 | 80.725  | 14.353 | 13.734 | 11.919 | 3.4250 | 3.1480 | 2.7430 | 2.2910 | 2.2060 | 0.7621 | 0.6427 | 0.5463 | 0.3532 | 0.3351 | 0.0876 | 0.0840 |
| Hg | 80 | 83.102  | 14.839 | 14.209 | 12.284 | 3.5620 | 3.2790 | 2.8470 | 2.3850 | 2.2950 | 0.8022 | 0.6802 | 0.5766 | 0.3782 | 0.3588 | 0.1040 | 0.0999 |
| ΤI | 81 | 85.530  | 15.347 | 14.698 | 12.658 | 3.7040 | 3.4160 | 2.9570 | 2.4850 | 2.3890 | 0.8462 | 0.7205 | 0.6095 | 0.4057 | 0.3850 | 0.1222 | 0.1178 |
| Р  | 82 | 88.005  | 15.861 | 15.200 | 13.035 | 3.8510 | 3.5540 | 3.0660 | 2.5860 | 2.4840 | 0.8918 | 0.7619 | 0.6435 | 0.4343 | 0.4122 | 0.1417 | 0.1369 |
| Bi | 83 | 90.524  | 16.388 | 15.711 | 13.419 | 3.9990 | 3.6960 | 3.1770 | 2.6880 | 2.5800 | 0.9390 | 0.8052 | 0.6788 | 0.4640 | 0.4401 | 0.1623 | 0.1570 |
| Po | 84 | 93.105  | 16.939 | 16.244 | 13.814 | 4.1490 | 3.8540 | 3.3020 | 2.7980 | 2.6830 | 0.9950 | 0.8510 | 0.7050 | 0.5000 | 0.4730 | 0.1840 | 0.1840 |
| At | 85 | 95.730  | 17.493 | 16.785 | 14.214 | 4.3170 | 4.0080 | 3.4260 | 2.9090 | 2.7870 | 1.0420 | 0.8860 | 0.7400 | 0.5330 | 0.5070 | 0.2100 | 0.2100 |
| Rn | 86 | 98.404  | 18.049 | 17.337 | 14.619 | 4.4820 | 4.1590 | 3.5380 | 3.0220 | 2.8920 | 1.0970 | 0.9290 | 0.7680 | 0.5670 | 0.5410 | 0.2380 | 0.2380 |
| Fr | 87 | 101.137 | 18.639 | 17.907 | 15.031 | 4.6520 | 4.3270 | 3.6630 | 3.1360 | 3.0000 | 1.1530 | 0.9800 | 0.8100 | 0.6030 | 0.5770 | 0.2680 | 0.2680 |
| Ra | 88 | 103.922 | 19.237 | 18.484 | 15.444 | 4.8220 | 4.4900 | 3.7920 | 3.2480 | 3.1050 | 1.2080 | 1.0580 | 0.8790 | 0.6360 | 0.6030 | 0.2990 | 0.2990 |
| Ac | 89 | 106.755 | 19.840 | 19.083 | 15.871 | 5.0020 | 4.6560 | 3.9090 | 3.3700 | 3.2190 | 1.2690 | 1.0800 | 0.8900 | 0.6750 | 0.6390 | 0.3190 | 0.3190 |
| Th | 90 | 109.651 | 20.472 | 19.693 | 16.300 | 5.1820 | 4.8300 | 4.0460 | 3.4910 | 3.3320 | 1.3300 | 1.1680 | 0.9664 | 0.7121 | 0.6752 | 0.3424 | 0.3331 |
| Ра | 91 | 112.601 | 21.105 | 20.314 | 16.733 | 5.3670 | 5.0010 | 4.1740 | 3.6110 | 3.4420 | 1.3870 | 1.2240 | 1.0070 | 0.7430 | 0.7080 | 0.3710 | 0.3600 |
| U  | 92 | 115.606 | 21.757 | 20.948 | 17.166 | 5.5480 | 5.1820 | 4.3030 | 3.7280 | 3.5520 | 1.4390 | 1.2710 | 1.0430 | 0.7783 | 0.7362 | 0.3882 | 0.3774 |

# Table 29: Electron binding energies in keV (part II).

| Elt | Ζ  | 01     | O2     | <b>O</b> 3 | 04  | O5  | P1  | P2  | P3  |
|-----|----|--------|--------|------------|-----|-----|-----|-----|-----|
| Gd  | 64 | 0.0360 | 0.0280 | 0.0210     | -99 | -99 | -99 | -99 | -99 |
| Т   | 65 | 0.0456 | 0.0287 | 0.0226     | -99 | -99 | -99 | -99 | -99 |
| Dy  | 66 | 0.0499 | 0.0263 | 0.0263     | -99 | -99 | -99 | -99 | -99 |
| Ho  | 67 | 0.0493 | 0.0308 | 0.0241     | -99 | -99 | -99 | -99 | -99 |
| Er  | 68 | 0.0506 | 0.0314 | 0.0247     | -99 | -99 | -99 | -99 | -99 |
| Tm  | 69 | 0.0547 | 0.0318 | 0.0250     | -99 | -99 | -99 | -99 | -99 |
| Y   | 70 | 0.0520 | 0.0303 | 0.0241     | -99 | -99 | -99 | -99 | -99 |
| Lu  | 71 | 0.0573 | 0.0336 | 0.0267     | -99 | -99 | -99 | -99 | -99 |
| Hf  | 72 | 0.0642 | 0.0380 | 0.0299     | -99 | -99 | -99 | -99 | -99 |

| Та | 73 | 0.0697 | 0.0422 | 0.0327 | -99    | -99    | -99    | -99    | -99    |
|----|----|--------|--------|--------|--------|--------|--------|--------|--------|
| W  | 74 | 0.0756 | 0.0453 | 0.0368 | -99    | -99    | -99    | -99    | -99    |
| Re | 75 | 0.0830 | 0.0456 | 0.0346 | -99    | -99    | -99    | -99    | -99    |
| Os | 76 | 0.0840 | 0.0580 | 0.0445 | -99    | -99    | -99    | -99    | -99    |
| Ir | 77 | 0.0952 | 0.0630 | 0.0480 | -99    | -99    | -99    | -99    | -99    |
| Pt | 78 | 0.1017 | 0.0653 | 0.0517 | -99    | -99    | -99    | -99    | -99    |
| Au | 79 | 0.1072 | 0.0742 | 0.0572 | -99    | -99    | -99    | -99    | -99    |
| Hg | 80 | 0.1270 | 0.0831 | 0.0645 | 0.0096 | 0.0078 | -99    | -99    | -99    |
| TI | 81 | 0.1360 | 0.0946 | 0.0735 | 0.0147 | 0.0125 | -99    | -99    | -99    |
| Р  | 82 | 0.1470 | 0.1064 | 0.0833 | 0.0207 | 0.0181 | -99    | -99    | -99    |
| Bi | 83 | 0.1593 | 0.1190 | 0.0926 | 0.0269 | 0.0238 | -99    | -99    | -99    |
| Po | 84 | 0.1770 | 0.1320 | 0.1040 | 0.0310 | 0.0310 | -99    | -99    | -99    |
| At | 85 | 0.1950 | 0.1480 | 0.1150 | 0.0400 | 0.0400 | -99    | -99    | -99    |
| Rn | 86 | 0.2140 | 0.1640 | 0.1270 | 0.0480 | 0.0480 | 0.0260 | -99    | -99    |
| Fr | 87 | 0.2340 | 0.1820 | 0.1400 | 0.0580 | 0.0580 | 0.0340 | 0.0150 | 0.0150 |
| Ra | 88 | 0.2540 | 0.2000 | 0.1530 | 0.0680 | 0.0680 | 0.0440 | 0.0190 | 0.0190 |
| Ac | 89 | 0.2720 | 0.2150 | 0.1670 | 0.0800 | 0.0800 | -99    | -99    | -99    |
| Th | 90 | 0.2900 | 0.2290 | 0.1820 | 0.0925 | 0.0854 | 0.0414 | 0.0245 | 0.0166 |
| Pa | 91 | 0.3100 | 0.2320 | 0.2320 | 0.0940 | 0.0940 | -99    | -99    | -99    |
| U  | 92 | 0.3210 | 0.2570 | 0.1920 | 0.1028 | 0.0942 | 0.0439 | 0.0268 | 0.0168 |

#### 11 Appendix 4: Miscellaneous input files

Aside from the files specified in Appendix 1 to 3, four additional files are required:

- *dset4* this is a file that is used by PIXAN.
- GEOPIXEKabratiosylds16Nov10.txt the GEOPIXE (Ryan et al., 1990) input files.
- *detector\_configuration.txt* in this file the detector parameters are specified.

File *dset4* contains the information: NAME, UI, Z, ALFAK, EXR, A, WK, where for each element designated NAME, this file contains parameters useful for calculating the X-ray yield by PIXAN. UI is the adsorption edge, A is the element atomic number, ALFAK is the ratio of the reference line to the sum of all lines, EXR is the X-ray energy of the reference line (either K $\alpha$  or L $\alpha$ ), A is the element atomic weight and  $\omega$ K is the element fluorescence yield. This file is read in and the quantities ALFAK and  $\omega_{K}$  are replaced by the calculated values.

The file *detector\_configuration.txt*, has been included such that the detector efficiency can be calculated for each of the X-ray energies and contains the following information:

- Line 1: detector distance (mm)
- Line 2: Be window, Si dead layer, Gold contact, Thickness, FG, Ice thickness all in microns
- Line 3: filter type 1 for Mylar, 2 for Perspex 3 for Kapton, 4 for Be, 5 for Graphite, 5 graphite, 6 Al, 7 He, 8 Air.
- Line 4: filter thickness (mm) and hole fraction

#### 12 Appendix 5: Output files

The file "*results.csv*" is always generated. It contains a list of the selected options together with a table of relative intensities for each of the K, L and M shells. The files "*xsectionresults.csv*" and "*wbar.csv*" are also generated which contain the line production cross sections and the effective fluorescence yields respectively. The file "*wbar.csv*" also contains the ionisation cross sections and the X-ray production cross-sections for each subshell.

Two additional files "*Lshell\_Spectrum.csv*" and "*Mshell\_Spectrum.csv*" are optionally generated and contain Gaussian spectral lines for plotting later and the efficiency corrected total spectra for each sub-shell are produced in files "*Lsubshell.csv*" and "*Msubshell.csv*".

#### 12.1 Calculated Intensities – file results.csv

The output file "*results.csv*" contains four main sections (illustrated with options specified in section 5.1):

- The options selected for the run
- The K shell intensities
- The L shell intensities
- The M shell intensities

## 12.1.1 Run options

Calculating for Protons

K shell options

Krause for wk Salem for K shell emission rates

L shell options Campbell for wL Scofield for emission rate Bambynek for wL bar option M shell options DF for emission reate DF for fluorescence yield Exp for wM\_bar Bambynek for Super C-K transitions Write Calculated values in dset2

#### 12.1.2 K shell X-ray line intensities for 3 MeV protons

The K shell intensities are generated relative to  $(\alpha_1 + \alpha_2) = 100$ . The average fluorescence yield  $\omega_K$  is taken from the experimental compilations of Krause 1979.

#### Table 30: Sample K shell calculates intensities for 3 MeV protons.

| Z  | Κα1    | Κα2    | Κα3 | <b>Κ</b> β1 | <b>Κ</b> β2 | <b>Κ</b> β3 | <b>Κ</b> β4 | <b>Κ</b> β5 | Κβ/Κα  | Kα/Ktot | ωΚ     |
|----|--------|--------|-----|-------------|-------------|-------------|-------------|-------------|--------|---------|--------|
| 6  | 67.141 | 32.859 | 0   | 0           | 0           | 0           | 0           | 0           | 0      | 1.00    | 0.0028 |
| 7  | 67.101 | 32.899 | 0   | 0           | 0           | 0           | 0           | 0           | 0      | 1.00    | 0.0052 |
| 8  | 67.060 | 32.940 | 0   | 0           | 0           | 0           | 0           | 0           | 0      | 1.00    | 0.0083 |
| 9  | 67.022 | 32.978 | 0   | 0           | 0           | 0           | 0           | 0           | 0      | 1.00    | 0.0130 |
| 10 | 66.984 | 33.016 | 0   | 0           | 0           | 0           | 0           | 0           | 0      | 1.00    | 0.0180 |
| 11 | 66.943 | 33.057 | 0   | 0           | 0           | 0           | 0           | 0           | 0      | 1.00    | 0.0230 |
| 12 | 66.903 | 33.097 | 0   | 0           | 0           | 0           | 0           | 0           | 0      | 1.00    | 0.0300 |
| 13 | 66.863 | 33.137 | 0   | 0.826       | 0           | 0.722       | 0           | 0           | 0.0155 | 0.9848  | 0.0390 |
| 14 | 66.823 | 33.177 | 0   | 1.651       | 0           | 0.835       | 0           | 0           | 0.0249 | 0.9757  | 0.0500 |
| 15 | 66.785 | 33.215 | 0   | 2.738       | 0           | 1.382       | 0           | 0           | 0.0412 | 0.9604  | 0.0630 |

| 16 | 66.747 | 33.253 | 0 | 3.825  | 0      | 1.929 | 0 | 0 | 0.0575 | 0.9456 | 0.0780 |
|----|--------|--------|---|--------|--------|-------|---|---|--------|--------|--------|
| 17 | 66.707 | 33.293 | 0 | 5.637  | 0      | 2.848 | 0 | 0 | 0.0849 | 0.9218 | 0.0970 |
| 18 | 66.667 | 33.333 | 0 | 7.447  | 0      | 3.767 | 0 | 0 | 0.1121 | 0.8992 | 0.1180 |
| 19 | 66.622 | 33.378 | 0 | 8.251  | 0      | 4.177 | 0 | 0 | 0.1243 | 0.8895 | 0.1400 |
| 20 | 66.578 | 33.422 | 0 | 9.055  | 0      | 4.587 | 0 | 0 | 0.1364 | 0.8800 | 0.1630 |
| 21 | 66.556 | 33.444 | 0 | 9.118  | 0      | 4.622 | 0 | 0 | 0.1374 | 0.8792 | 0.1880 |
| 22 | 66.534 | 33.466 | 0 | 9.182  | 0      | 4.657 | 0 | 0 | 0.1384 | 0.8784 | 0.2140 |
| 23 | 66.512 | 33.489 | 0 | 9.056  | 0      | 4.596 | 0 | 0 | 0.1365 | 0.8799 | 0.2430 |
| 24 | 66.489 | 33.511 | 0 | 8.930  | 0      | 4.535 | 0 | 0 | 0.1346 | 0.8813 | 0.2750 |
| 25 | 66.445 | 33.555 | 0 | 8.794  | 0      | 4.468 | 0 | 0 | 0.1326 | 0.8829 | 0.3080 |
| 26 | 66.401 | 33.599 | 0 | 8.659  | 0      | 4.402 | 0 | 0 | 0.1306 | 0.8845 | 0.3400 |
| 27 | 66.357 | 33.643 | 0 | 8.550  | 0      | 4.353 | 0 | 0 | 0.1290 | 0.8857 | 0.3730 |
| 28 | 66.313 | 33.687 | 0 | 8.442  | 0      | 4.304 | 0 | 0 | 0.1275 | 0.8870 | 0.4060 |
| 29 | 66.269 | 33.731 | 0 | 8.499  | 0      | 4.334 | 0 | 0 | 0.1283 | 0.8863 | 0.4400 |
| 30 | 66.225 | 33.775 | 0 | 8.556  | 0      | 4.364 | 0 | 0 | 0.1292 | 0.8856 | 0.4740 |
| 31 | 66.159 | 33.841 | 0 | 8.760  | 0.1654 | 4.472 | 0 | 0 | 0.1340 | 0.8819 | 0.5070 |
| 32 | 66.094 | 33.906 | 0 | 8.962  | 0.3305 | 4.580 | 0 | 0 | 0.1387 | 0.8782 | 0.5350 |
| 33 | 66.050 | 33.950 | 0 | 9.237  | 0.4789 | 4.723 | 0 | 0 | 0.1444 | 0.8738 | 0.5620 |
| 34 | 66.007 | 33.993 | 0 | 9.512  | 0.6271 | 4.865 | 0 | 0 | 0.1500 | 0.8695 | 0.5890 |
| 35 | 65.963 | 34.037 | 0 | 9.878  | 0.9400 | 5.056 | 0 | 0 | 0.1587 | 0.8630 | 0.6180 |
| 36 | 65.920 | 34.080 | 0 | 10.244 | 1.2525 | 5.247 | 0 | 0 | 0.1674 | 0.8566 | 0.6425 |
| 37 | 65.855 | 34.146 | 0 | 10.240 | 1.6134 | 5.252 | 0 | 0 | 0.1711 | 0.8539 | 0.6670 |
| 38 | 65.790 | 34.211 | 0 | 10.237 | 1.9737 | 5.257 | 0 | 0 | 0.1747 | 0.8513 | 0.6900 |
| 39 | 65.725 | 34.275 | 0 | 10.454 | 2.2018 | 5.373 | 0 | 0 | 0.1803 | 0.8473 | 0.7100 |
| 40 | 65.660 | 34.340 | 0 | 10.670 | 2.4294 | 5.489 | 0 | 0 | 0.1859 | 0.8433 | 0.7300 |
| 41 | 65.617 | 34.383 | 0 | 10.840 | 2.5591 | 5.581 | 0 | 0 | 0.1898 | 0.8405 | 0.7470 |
| 42 | 65.574 | 34.426 | 0 | 11.010 | 2.6885 | 5.672 | 0 | 0 | 0.1937 | 0.8377 | 0.7650 |
| 43 | 65.531 | 34.469 | 0 | 11.173 | 2.8178 | 5.763 | 0 | 0 | 0.1975 | 0.8350 | 0.7795 |
| 44 | 65.488 | 34.512 | 0 | 11.336 | 2.9470 | 5.855 | 0 | 0 | 0.2014 | 0.8324 | 0.7940 |
| 45 | 65.445 | 34.555 | 0 | 11.486 | 3.0432 | 5.936 | 0 | 0 | 0.2046 | 0.8301 | 0.8080 |
| 46 | 65.402 | 34.598 | 0 | 11.635 | 3.1393 | 6.017 | 0 | 0 | 0.2079 | 0.8279 | 0.8200 |
| 47 | 65.338 | 34.662 | 0 | 11.575 | 3.2996 | 5.995 | 0 | 0 | 0.2087 | 0.8273 | 0.8310 |
| 48 | 65.274 | 34.726 | 0 | 11.514 | 3.4595 | 5.973 | 0 | 0 | 0.2095 | 0.8268 | 0.8430 |
| 49 | 65.232 | 34.768 | 0 | 11.735 | 3.5225 | 6.089 | 0 | 0 | 0.2135 | 0.8241 | 0.8530 |
| 50 | 65.189 | 34.811 | 0 | 11.956 | 3.5854 | 6.206 | 0 | 0 | 0.2175 | 0.8214 | 0.8620 |
| 51 | 65.125 | 34.875 | 0 | 12.048 | 3.6796 | 6.255 | 0 | 0 | 0.2198 | 0.8198 | 0.8700 |
| 52 | 65.062 | 34.938 | 0      | 12.141 | 3.7736 | 6.305 | 0      | 0      | 0.2222 | 0.8182 | 0.8770 |
|----|--------|--------|--------|--------|--------|-------|--------|--------|--------|--------|--------|
| 53 | 65.020 | 34.981 | 0      | 12.237 | 3.9662 | 6.346 | 0      | 0      | 0.2255 | 0.8160 | 0.8840 |
| 54 | 64.977 | 35.023 | 0      | 12.333 | 4.1585 | 6.387 | 0      | 0      | 0.2288 | 0.8138 | 0.8910 |
| 55 | 64.893 | 35.107 | 0      | 12.333 | 4.3478 | 6.389 | 0      | 0      | 0.2307 | 0.8125 | 0.8970 |
| 56 | 64.809 | 35.191 | 0      | 12.333 | 4.5366 | 6.390 | 0      | 0      | 0.2326 | 0.8113 | 0.9020 |
| 57 | 64.746 | 35.254 | 0      | 12.328 | 4.7264 | 6.387 | 0      | 0      | 0.2344 | 0.8101 | 0.9070 |
| 58 | 64.683 | 35.317 | 0      | 12.322 | 4.9159 | 6.384 | 0      | 0      | 0.2362 | 0.8089 | 0.9120 |
| 59 | 64.620 | 35.380 | 0.0036 | 12.284 | 5.1373 | 6.365 | 0      | 0      | 0.2379 | 0.8078 | 0.9170 |
| 60 | 64.558 | 35.442 | 0.0071 | 12.247 | 5.3583 | 6.346 | 0      | 0      | 0.2395 | 0.8068 | 0.9210 |
| 61 | 64.495 | 35.505 | 0.0081 | 12.241 | 5.4499 | 6.337 | 0      | 0      | 0.2403 | 0.8063 | 0.9250 |
| 62 | 64.433 | 35.567 | 0.0090 | 12.236 | 5.5412 | 6.327 | 0      | 0      | 0.2410 | 0.8058 | 0.9290 |
| 63 | 64.350 | 35.650 | 0.0100 | 12.288 | 5.6049 | 6.355 | 0.0273 | 0.0972 | 0.2437 | 0.8041 | 0.9320 |
| 64 | 64.267 | 35.733 | 0.0109 | 12.339 | 5.6684 | 6.382 | 0.0546 | 0.1941 | 0.2464 | 0.8023 | 0.9350 |
| 65 | 64.185 | 35.815 | 0.0122 | 12.516 | 5.6579 | 6.473 | 0.0568 | 0.2073 | 0.2491 | 0.8006 | 0.9380 |
| 66 | 64.103 | 35.897 | 0.0135 | 12.692 | 5.6474 | 6.564 | 0.0590 | 0.2199 | 0.2518 | 0.7989 | 0.9410 |
| 67 | 64.021 | 35.980 | 0.0150 | 12.804 | 5.6050 | 6.626 | 0.0602 | 0.2330 | 0.2532 | 0.7979 | 0.9440 |
| 68 | 63.939 | 36.061 | 0.0166 | 12.916 | 5.5627 | 6.688 | 0.0614 | 0.2462 | 0.2547 | 0.7970 | 0.9470 |
| 69 | 63.877 | 36.123 | 0.0179 | 13.063 | 5.5254 | 6.765 | 0.0639 | 0.2581 | 0.2567 | 0.7957 | 0.9490 |
| 70 | 63.816 | 36.184 | 0.0191 | 13.210 | 5.4882 | 6.841 | 0.0664 | 0.2699 | 0.2587 | 0.7945 | 0.9510 |
| 71 | 63.715 | 36.285 | 0.0210 | 13.348 | 5.4094 | 6.913 | 0.0701 | 0.2823 | 0.2602 | 0.7935 | 0.9530 |
| 72 | 63.613 | 36.387 | 0.0229 | 13.486 | 5.3308 | 6.985 | 0.0738 | 0.2939 | 0.2616 | 0.7926 | 0.9550 |
| 73 | 63.532 | 36.468 | 0.0251 | 13.596 | 5.3526 | 7.043 | 0.0775 | 0.3069 | 0.2637 | 0.7913 | 0.9570 |
| 74 | 63.452 | 36.548 | 0.0273 | 13.706 | 5.3744 | 7.100 | 0.0812 | 0.3198 | 0.2657 | 0.7901 | 0.9580 |
| 75 | 63.371 | 36.629 | 0.0298 | 13.878 | 5.3961 | 7.196 | 0.0862 | 0.3321 | 0.2688 | 0.7881 | 0.9590 |
| 76 | 63.291 | 36.709 | 0.0323 | 14.051 | 5.4177 | 7.291 | 0.0905 | 0.3443 | 0.2719 | 0.7863 | 0.9610 |
| 77 | 63.231 | 36.769 | 0.0360 | 14.164 | 5.5327 | 7.357 | 0.0961 | 0.3566 | 0.2750 | 0.7843 | 0.9620 |
| 78 | 63.171 | 36.829 | 0.0398 | 14.277 | 5.6475 | 7.423 | 0.1017 | 0.3689 | 0.2781 | 0.7824 | 0.9630 |
| 79 | 63.072 | 36.928 | 0.0438 | 14.317 | 5.7900 | 7.446 | 0.1072 | 0.3810 | 0.2803 | 0.7811 | 0.9640 |
| 80 | 62.972 | 37.028 | 0.0479 | 14.358 | 5.9320 | 7.469 | 0.1134 | 0.3929 | 0.2825 | 0.7797 | 0.9650 |
| 81 | 62.873 | 37.127 | 0.0525 | 14.335 | 6.1050 | 7.463 | 0.1201 | 0.4049 | 0.2841 | 0.7787 | 0.9660 |
| 82 | 62.775 | 37.225 | 0.0571 | 14.313 | 6.2775 | 7.458 | 0.1268 | 0.4168 | 0.2857 | 0.7778 | 0.9670 |
| 83 | 62.696 | 37.304 | 0.0633 | 14.295 | 6.4483 | 7.455 | 0.1342 | 0.4295 | 0.2874 | 0.7767 | 0.9680 |
| 84 | 62.617 | 37.383 | 0.0701 | 14.277 | 6.6187 | 7.452 | 0.1415 | 0.4415 | 0.2891 | 0.7757 | 0.9680 |
| 85 | 62.520 | 37.481 | 0.0763 | 14.255 | 6.7584 | 7.446 | 0.1494 | 0.4539 | 0.2904 | 0.7750 | 0.9690 |
| 86 | 62.422 | 37.578 | 0.0824 | 14.232 | 6.8976 | 7.441 | 0.1573 | 0.4669 | 0.2917 | 0.7742 | 0.9690 |
| 87 | 62.305 | 37.695 | 0.0903 | 14.268 | 7.0000 | 7.467 | 0.1657 | 0.4760 | 0.2935 | 0.7731 | 0.9700 |

| 88  | 62.189 | 37.811 | 0.0983 | 14.304 | 7.1020 | 7.494 | 0.1741 | 0.4851 | 0.2953 | 0.7720 | 0.9700 |
|-----|--------|--------|--------|--------|--------|-------|--------|--------|--------|--------|--------|
| 89  | 62.093 | 37.908 | 0.1062 | 14.343 | 7.1748 | 7.523 | 0.1838 | 0.4986 | 0.2969 | 0.7711 | 0.9710 |
| 90  | 61.996 | 38.004 | 0.1147 | 14.383 | 7.2474 | 7.551 | 0.1940 | 0.5115 | 0.2985 | 0.7701 | 0.9710 |
| 91  | 61.881 | 38.119 | 0.1238 | 14.418 | 7.3144 | 7.584 | 0.2042 | 0.5229 | 0.3001 | 0.7692 | 0.9720 |
| 92  | 61.767 | 38.234 | 0.1328 | 14.453 | 7.3811 | 7.616 | 0.2143 | 0.5343 | 0.3016 | 0.7683 | 0.9720 |
| 93  | 61.652 | 38.348 | 0.1418 | 14.427 | 7.4476 | 7.611 | 0.2244 | 0.5456 | 0.3021 | 0.7680 | 0.9730 |
| 94  | 61.539 | 38.462 | 0.1508 | 14.400 | 7.5138 | 7.606 | 0.2345 | 0.5569 | 0.3027 | 0.7677 | 0.9730 |
| 95  | 61.406 | 38.594 | 0.1597 | 14.369 | 7.5775 | 7.596 | 0.2444 | 0.5680 | 0.3031 | 0.7674 | 0.9740 |
| 96  | 61.275 | 38.726 | 0.1685 | 14.338 | 7.6409 | 7.586 | 0.2543 | 0.5790 | 0.3035 | 0.7672 | 0.9740 |
| 97  | 61.087 | 38.913 | 0.1772 | 14.417 | 7.6970 | 7.642 | 0.2639 | 0.5895 | 0.3055 | 0.7660 | 0.9750 |
| 98  | 60.901 | 39.099 | 0.1857 | 14.495 | 7.7527 | 7.698 | 0.2734 | 0.5999 | 0.3076 | 0.7648 | 0.9750 |
| 99  | 60.790 | 39.210 | 0.1945 | 14.529 | 7.8176 | 7.730 | 0.2833 | 0.6109 | 0.3091 | 0.7639 | 0.9750 |
| 100 | 60.680 | 39.320 | 0.2033 | 14.563 | 7.8823 | 7.761 | 0.2931 | 0.6220 | 0.3106 | 0.7630 | 0.9760 |

## 12.1.3 L shell intensities

The L shell intensities are generated relative to  $(\alpha_1 + \alpha_2) = 100$ .

| Table 31: Sample L | shell calculated | intensities | for 3 MeV | protons. |
|--------------------|------------------|-------------|-----------|----------|
|--------------------|------------------|-------------|-----------|----------|

| Energ | y= 3.00 | MeVp   |        |        |        |       |       |       |     |        |       |        |       |      |        |     |       |         |        |
|-------|---------|--------|--------|--------|--------|-------|-------|-------|-----|--------|-------|--------|-------|------|--------|-----|-------|---------|--------|
| Ζ     | LI      | La1    | Lα2    | Lη     | Lβ1    | Lβ215 | Lβ3   | Lβ4   | Lβ5 | Lβ6    | Lγ1   | Lγ2    | Lγ3   | Lγ44 | Lγ5    | Lγ6 | L1P23 | Lα/Ltot | ωL     |
| 25    | 10.804  | 89.738 | 10.262 | 4.3570 | 41.935 | 0     | 2.193 | 1.167 | 0   | 0.9647 | 0     | 0      | 0     | 0    | 0.3913 | 0   | 0     | 0.6180  | 0.0037 |
| 26    | 9.452   | 89.734 | 10.266 | 3.8727 | 42.792 | 0     | 1.832 | 0.978 | 0   | 0.8211 | 0     | 0      | 0     | 0    | 0.3385 | 0   | 0     | 0.6247  | 0.0048 |
| 28    | 6.747   | 89.726 | 10.274 | 2.7641 | 43.392 | 0     | 1.454 | 0.785 | 0   | 0.5339 | 0     | 0      | 0     | 0    | 0.2200 | 0   | 0     | 0.6415  | 0.0075 |
| 29    | 6.213   | 89.734 | 10.266 | 2.5531 | 43.770 | 0     | 1.316 | 0.714 | 0   | 0.5124 | 0     | 0      | 0     | 0    | 0.2118 | 0   | 0     | 0.6440  | 0.0091 |
| 30    | 5.679   | 89.742 | 10.258 | 2.6066 | 49.227 | 0     | 1.489 | 0.812 | 0   | 0.4909 | 0     | 0      | 0     | 0    | 0.2269 | 0   | 0     | 0.6229  | 0.0110 |
| 32    | 4.610   | 89.759 | 10.242 | 1.9661 | 46.591 | 0     | 1.994 | 1.099 | 0   | 0.4470 | 0     | 0.0269 | 0.049 | 0    | 0.1934 | 0   | 0     | 0.6370  | 0.0154 |
| 33    | 4.469   | 89.767 | 10.233 | 1.8859 | 46.416 | 0     | 2.036 | 1.127 | 0   | 0.4659 | 0     | 0.0521 | 0.094 | 0    | 0.1987 | 0   | 0     | 0.6380  | 0.0179 |
| 34    | 4.327   | 89.775 | 10.225 | 1.8088 | 46.321 | 0     | 2.099 | 1.168 | 0   | 0.4857 | 0     | 0.0791 | 0.143 | 0    | 0.2043 | 0   | 0     | 0.6384  | 0.0206 |
| 35    | 4.185   | 89.783 | 10.217 | 1.7496 | 46.681 | 0     | 2.108 | 1.179 | 0   | 0.5046 | 0     | 0.1050 | 0.189 | 0    | 0.2119 | 0   | 0     | 0.6373  | 0.0235 |
| 36    | 4.043   | 89.791 | 10.209 | 1.5289 | 42.588 | 0     | 2.536 | 1.425 | 0   | 0.5235 | 0     | 0.1570 | 0.282 | 0    | 0.1989 | 0   | 0     | 0.6524  | 0.0266 |
| 37    | 3.978   | 89.795 | 10.205 | 1.4214 | 40.578 | 0     | 3.619 | 2.046 | 0   | 0.5442 | 0     | 0.2481 | 0.444 | 0    | 0.1952 | 0   | 0     | 0.6533  | 0.0300 |
| 38    | 3.913   | 89.799 | 10.201 | 1.3499 | 39.527 | 0     | 3.888 | 2.210 | 0   | 0.5657 | 0     | 0.2923 | 0.521 | 0    | 0.1957 | 0   | 0     | 0.6559  | 0.0336 |
| 39    | 3.849   | 89.803 | 10.197 | 1.3169 | 39.582 | 0.351 | 4.042 | 2.311 | 0   | 0.5864 | 0.133 | 0.3308 | 0.588 | 0    | 0.2019 | 0   | 0     | 0.6524  | 0.0373 |

| 40 | 3.784 | 89.807 1 | 10.193 | 1.2217 | 37.705 | 1.585  | 4.154  | 2.389 0.0834 0.607  | 0.598 0.3676   | 0.651 | 0 0.1976      | 0.0272 0 | 0.6520 | 0.0413 |
|----|-------|----------|--------|--------|--------|--------|--------|---------------------|----------------|-------|---------------|----------|--------|--------|
| 41 | 3.759 | 89.809 1 | 10.192 | 1.1282 | 35.368 | 2.819  | 4.237  | 2.452 0.0709 0.623  | 3 1.002 0.3894 | 0.685 | 0 0.1882      | 0.0216 0 | 0.6547 | 0.0455 |
| 42 | 3.735 | 89.811 1 | 10.189 | 1.1038 | 35.152 | 4.052  | 4.293  | 2.501 0.0584 0.638  | 6 1.435 0.4091 | 0.716 | 0 0.1902      | 0.0176 0 | 0.6481 | 0.0498 |
| 43 | 3.711 | 89.813 1 | 10.187 | 1.0851 | 35.116 | 5.286  | 4.381  | 2.569 0.0458 0.653  | 8 1.872 0.4324 | 0.752 | 0 0.1928      | 0.0137 ( | 0.6406 | 0.0544 |
| 44 | 3.687 | 89.815 1 | 10.185 | 1.0490 | 34.506 | 6.521  | 4.373  | 2.580 0.0333 0.670  | 2.271 0.4465   | 0.772 | 0 0.1925      | 0.0096 0 | 0.6365 | 0.0591 |
| 45 | 3.698 | 89.815 1 | 10.185 | 1.0416 | 34.501 | 7.760  | 4.528  | 2.692 0.0432 0.683  | 5 2.707 0.4779 | 0.821 | 0 0.1942      | 0.0123 ( | 0.6283 | 0.0640 |
| 46 | 3.708 | 89.815 1 | 10.185 | 1.0327 | 34.448 | 9.000  | 4.542  | 2.721 0.0531 0.697  | 3.138 0.4951   | 0.846 | 0 0.1960      | 0.0149 ( | 0.6215 | 0.0692 |
| 47 | 3.718 | 89.815 1 | 10.185 | 1.0255 | 34.435 | 10.239 | 4.784  | 2.887 0.0630 0.7104 | 3.573 0.5380   | 0.914 | 0 0.1980      | 0.0176 0 | 0.6131 | 0.0744 |
| 48 | 3.728 | 89.815 1 | 10.185 | 1.0336 | 34.953 | 11.478 | 4.908  | 2.984 0.0729 0.723  | 4.069 0.5688   | 0.960 | 0 0.2027      | 0.0205 0 | 0.6035 | 0.0799 |
| 49 | 3.668 | 89.823 1 | 10.177 | 1.0213 | 34.799 | 12.337 | 4.957  | 3.024 0.0839 0.7419 | 4.357 0.5961   | 1.001 | 0 0.2050      | 0.0233 ( | 0.5995 | 0.0855 |
| 50 | 3.609 | 89.831 1 | 10.169 | 1.1962 | 41.079 | 13.196 | 13.399 | 8.200 0.0952 0.760  | 5.505 1.6694   | 2.790 | 0.1391 0.2456 | 0.0310 ( | 0.5211 | 0.0914 |
| 51 | 3.660 | 89.831 1 | 10.169 | 1.1783 | 40.717 | 13.877 | 13.181 | 8.133 0.1042 0.780  | 5.742 1.6935   | 2.813 | 0.2645 0.2472 | 0.0333 ( | 0.5197 | 0.0973 |
| 52 | 3.712 | 89.831 1 | 10.169 | 1.1518 | 40.050 | 14.557 | 12.902 | 8.025 0.1141 0.799  | 5.929 1.7075   | 2.821 | 0.3838 0.2467 | 0.0353 ( | 0.5197 | 0.1035 |
| 53 | 3.764 | 89.831 1 | 10.169 | 1.1528 | 40.322 | 15.238 | 12.531 | 7.857 0.1240 0.819  | 6.253 1.7071   | 2.805 | 0.4941 0.2520 | 0.0382 0 | 0.5172 | 0.1098 |
| 54 | 3.815 | 89.831 1 | 10.169 | 1.1391 | 40.096 | 15.918 | 12.271 | 7.755 0.1330 0.839  | 6.500 1.7192   | 2.811 | 0.6025 0.2542 | 0.0405 ( | 0.5157 | 0.1164 |
| 55 | 3.840 | 89.827 1 | 10.173 | 1.1387 | 40.264 | 16.497 | 12.031 | 7.670 0.1455 0.857  | 6.768 1.7360   | 2.819 | 0.6845 0.2581 | 0.0439 ( | 0.5135 | 0.1231 |
| 56 | 3.864 | 89.823 1 | 10.177 | 1.1247 | 39.967 | 17.075 | 12.009 | 7.722 0.1581 0.875  | 6.958 1.7833   | 2.877 | 0.7770 0.2590 | 0.0468 ( | 0.5115 | 0.1299 |
| 57 | 3.895 | 89.823 1 | 10.177 | 1.1071 | 39.495 | 17.206 | 11.741 | 7.624 0.1581 0.8884 | 6.941 1.7735   | 2.837 | 0.7544 0.2567 | 0.0458 ( | 0.5136 | 0.1370 |
| 58 | 3.926 | 89.823 1 | 10.177 | 1.1022 | 39.478 | 17.336 | 11.585 | 7.594 0.1590 0.900  | 7.002 1.7795   | 2.822 | 0.7391 0.2574 | 0.0458 ( | 0.5135 | 0.1442 |
| 59 | 3.957 | 89.823 1 | 10.177 | 1.1046 | 39.705 | 17.466 | 11.345 | 7.508 0.1599 0.912  | 6 7.106 1.7715 | 2.786 | 0.7187 0.2593 | 0.0457 ( | 0.5132 | 0.1517 |
| 60 | 3.987 | 89.823 1 | 10.177 | 1.1062 | 39.922 | 17.596 | 10.888 | 7.274 0.1599 0.925  | 2 7.210 1.7280 | 2.696 | 0.6849 0.2615 | 0.0455 0 | 0.5142 | 0.1593 |
| 61 | 4.024 | 89.823 1 | 10.177 | 1.0988 | 39.768 | 17.677 | 10.599 | 7.154 0.1608 0.937  | 8 7.228 1.7080 | 2.640 | 0.6614 0.2609 | 0.0449 ( | 0.5156 | 0.1672 |
| 62 | 4.062 | 89.823 1 | 10.177 | 1.0969 | 39.817 | 17.758 | 10.301 | 7.025 0.1608 0.9494 | 7.282 1.6852   | 2.580 | 0.6376 0.2616 | 0.0446 ( | 0.5164 | 0.1753 |
| 63 | 4.104 | 89.821 1 | 10.179 | 1.0877 | 39.567 | 17.809 | 9.809  | 6.765 0.1608 0.962  | 7.270 1.6290   | 2.469 | 0.6026 0.2603 | 0.0439 ( | 0.5194 | 0.1835 |
| 64 | 4.147 | 89.817 1 | 10.183 | 1.0806 | 39.381 | 17.858 | 9.433  | 6.578 0.1617 0.973  | 6 7.269 1.5898 | 2.386 | 0.5751 0.2595 | 0.0433 ( | 0.5216 | 0.1921 |
| 65 | 4.189 | 89.815 1 | 10.185 | 1.0726 | 39.174 | 17.909 | 9.115  | 6.426 0.1626 0.986  | 2 7.263 1.5586 | 2.316 | 0.5514 0.2585 | 0.0427 ( | 0.5235 | 0.2008 |
| 66 | 4.240 | 89.813 1 | 10.187 | 1.0662 | 38.985 | 17.943 | 8.720  | 6.226 0.1626 0.9990 | 7.256 1.5142   | 2.224 | 0.5246 0.2577 | 0.0421 ( | 0.5259 | 0.2098 |
| 67 | 4.291 | 89.812 1 | 10.188 | 1.0420 | 38.128 | 17.977 | 8.285  | 5.990 0.1635 1.013  | 7.124 1.4609   | 2.122 | 0.4956 0.2524 | 0.0412 ( | 0.5308 | 0.2191 |
| 68 | 4.342 | 89.810 1 | 10.190 | 1.0232 | 37.479 | 18.011 | 7.812  | 5.718 0.1644 1.0274 | 7.030 1.3981   | 2.008 | 0.4646 0.2489 | 0.0401 ( | 0.5354 | 0.2286 |
| 69 | 4.393 | 89.809 1 | 10.192 | 1.0089 | 36.981 | 18.044 | 7.816  | 5.792 0.1652 1.0409 | 6.963 1.4197   | 2.017 | 0.4622 0.2459 | 0.0392 0 | 0.5365 | 0.2383 |
| 70 | 4.445 | 89.807 1 | 10.193 | 0.9912 | 36.373 | 18.078 | 7.297  | 5.473 0.1661 1.0543 | 6.875 1.3448   | 1.891 | 0.4291 0.2422 | 0.0382 0 | 0.5414 | 0.2484 |
| 71 | 4.505 | 89.805 1 | 10.196 | 0.9827 | 36.064 | 18.264 | 6.865  | 5.224 0.1742 1.073  | 6.895 1.2915   | 1.794 | 0.4279 0.2416 | 0.0393 0 | 0.5439 | 0.2587 |
| 72 | 4.566 | 89.801 1 | 10.199 | 0.9657 | 35.427 | 18.448 | 6.404  | 4.944 0.3152 1.092  | 6.852 1.2294   | 1.688 | 0.4218 0.2384 | 0.0879 0 | 0.5474 | 0.2693 |
| 73 | 4.626 | 89.799 1 | 10.201 | 0.9470 | 34.740 | 18.633 | 5.939  | 4.651 0.5945 1.111  | 6.795 1.1629   | 1.579 | 0.4122 0.2352 | 0.1932 ( | 0.5506 | 0.2802 |
| 74 | 4.694 | 89.796 1 | 10.204 | 0.9275 | 33.985 | 18.832 | 5.551  | 4.416 0.8737 1.134  | 6.729 1.1121   | 1.491 | 0.4024 0.2318 | 0.2936   | 0.5535 | 0.2914 |
| 75 | 4.762 | 89.795 1 | 10.205 | 0.8784 | 32.141 | 19.032 | 4.896  | 3.956 1.1539 1.156  | 6.441 1.0032   | 1.328 | 0.3702 0.2208 | 0.3764 ( | 0.5627 | 0.3029 |
| 76 | 4.829 | 89.792 1 | 10.208 | 0.8705 | 31.817 | 19.232 | 4.405  | 3.614 1.4340 1.179  | 6.453 0.9226   | 1.206 | 0.3467 0.2202 | 0.4706   | 0.5650 | 0.3147 |
| 77 | 4.897 | 89.791 1 | 10.209 | 0.8624 | 31.485 | 19.431 | 3.969  | 3.306 1.7132 1.2014 | 6.461 0.8493   | 1.097 | 0.3247 0.2194 | 0.5629 ( | 0.5670 | 0.3268 |

| 78 | 4.973 | 89.789 | 10.211 0.8433 | 30.732 | 19.583 | 2.786 | 2.364 1.9538 | 1.2256 | 6.365 | 0.6106 | 0.778 | 0.2405 | 0.2157 | 0.6272 | 0      | 0.5770 | 0.3393 |
|----|-------|--------|---------------|--------|--------|-------|--------------|--------|-------|--------|-------|--------|--------|--------|--------|--------|--------|
| 79 | 5.050 | 89.788 | 10.212 0.8284 | 30.135 | 19.735 | 2.576 | 2.226 2.1935 | 1.2489 | 6.298 | 0.5781 | 0.727 | 0.2341 | 0.2131 | 0.6916 | 0      | 0.5789 | 0.3520 |
| 80 | 5.125 | 89.786 | 10.214 0.8194 | 29.754 | 19.888 | 2.415 | 2.124 2.4332 | 1.2732 | 6.275 | 0.5544 | 0.689 | 0.2304 | 0.2121 | 0.7581 | 0      | 0.5795 | 0.3650 |
| 81 | 5.201 | 89.784 | 10.216 0.8110 | 29.395 | 20.040 | 2.240 | 2.006 2.6738 | 1.2965 | 6.255 | 0.5259 | 0.645 | 0.2239 | 0.2111 | 0.8236 | 0      | 0.5802 | 0.3784 |
| 82 | 5.277 | 89.783 | 10.217 0.7970 | 28.836 | 20.192 | 2.075 | 1.891 2.9134 | 1.3207 | 6.191 | 0.4980 | 0.604 | 0.2169 | 0.2085 | 0.8809 | 0.0076 | 0.5817 | 0.3920 |
| 83 | 5.364 | 89.780 | 10.220 0.7883 | 28.438 | 20.365 | 1.924 | 1.790 3.1199 | 1.3476 | 6.169 | 0.4742 | 0.565 | 0.2103 | 0.2073 | 0.9305 | 0.0141 | 0.5824 | 0.4059 |
| 84 | 5.451 | 89.779 | 10.221 0.7764 | 27.929 | 20.537 | 1.765 | 1.677 3.3272 | 1.3745 | 6.121 | 0.4463 | 0.523 | 0.2013 | 0.2053 | 0.9747 | 0.0194 | 0.5837 | 0.4201 |
| 85 | 5.537 | 89.776 | 10.224 0.7632 | 27.385 | 20.709 | 1.612 | 1.563 3.5327 | 1.4014 | 6.062 | 0.4180 | 0.482 | 0.1916 | 0.2029 | 1.0152 | 0.0236 | 0.5851 | 0.4345 |
| 86 | 5.624 | 89.775 | 10.225 0.7503 | 26.845 | 20.882 | 1.491 | 1.475 3.7400 | 1.4283 | 6.003 | 0.3962 | 0.450 | 0.1843 | 0.2005 | 1.0534 | 0.0272 | 0.5863 | 0.4492 |
| 87 | 5.721 | 89.773 | 10.227 0.7378 | 26.293 | 21.041 | 1.373 | 1.394 3.8935 | 1.4570 | 5.936 | 0.3764 | 0.419 | 0.1768 | 0.1982 | 1.0767 | 0.0275 | 0.5878 | 0.4641 |
| 88 | 5.817 | 89.772 | 10.228 0.6267 | 22.254 | 21.202 | 1.266 | 1.318 4.0478 | 1.4857 | 5.073 | 0.3577 | 0.390 | 0.1696 | 0.1691 | 0.9491 | 0.0275 | 0.6055 | 0.4792 |
| 89 | 5.914 | 89.771 | 10.229 0.7102 | 25.124 | 21.361 | 1.163 | 1.240 4.2013 | 1.5153 | 5.782 | 0.3381 | 0.362 | 0.1616 | 0.1924 | 1.1145 | 0.0273 | 0.5910 | 0.4945 |
| 90 | 6.011 | 89.769 | 10.231 0.6961 | 24.528 | 21.520 | 1.078 | 1.178 4.3556 | 1.5440 | 5.699 | 0.3227 | 0.339 | 0.1555 | 0.1896 | 1.1303 | 0.0272 | 0.5925 | 0.5099 |
| 91 | 6.107 | 89.768 | 10.232 0.6486 | 22.774 | 21.681 | 0.994 | 1.112 4.5100 | 1.5727 | 5.341 | 0.3059 | 0.315 | 0.1485 | 0.1776 | 1.0881 | 0.0268 | 0.5995 | 0.5255 |
| 92 | 6.204 | 89.767 | 10.233 0.6320 | 22.106 | 21.840 | 0.919 | 1.051 4.6634 | 1.6014 | 5.233 | 0.2903 | 0.294 | 0.1419 | 0.1738 | 1.0940 | 0.0264 | 0.6014 | 0.5412 |
| 93 | 6.309 | 89.763 | 10.237 0.6164 | 21.464 | 21.987 | 0.985 | 1.159 4.7610 | 1.6328 | 5.126 | 0.3211 | 0.319 | 0.1573 | 0.1702 | 1.0867 | 0.0292 | 0.6020 | 0.5569 |
| 94 | 6.414 | 89.759 | 10.242 0.5275 | 18.285 | 22.135 | 0.926 | 1.120 4.8586 | 1.6632 | 4.405 | 0.3111 | 0.303 | 0.1528 | 0.1463 | 0.9466 | 0.0282 | 0.6164 | 0.5727 |
| 95 | 6.519 | 89.755 | 10.246 0.5210 | 17.976 | 22.282 | 0.889 | 1.104 4.9562 | 1.6946 | 4.368 | 0.3077 | 0.294 | 0.1514 | 0.1451 | 0.9511 | 0.0279 | 0.6166 | 0.5884 |
| 96 | 6.625 | 89.751 | 10.250 0.5131 | 17.626 | 22.429 | 0.857 | 1.092 5.0539 | 1.7250 | 4.320 | 0.3050 | 0.286 | 0.1504 | 0.1435 | 0.9527 | 0.0277 | 0.6169 | 0.6042 |

## 12.1.4 M shell X-ray line intensities for 3 MeV protons

The M shell intensities are generated relative to  $(\alpha_1 + \alpha_2) = 100$ . The following two tables appear side by side in the output file.

## Table 32: Sample M shell calculated intensities for 3 MeV protons (part I).

| Ζ  | M5-N3  | M5-N7   | M5-N6  | M5-O3  | M4-N2  | M4-N3  | M4-N6   | M4-O3  | M4-O2  | M3-N1  | M3-N2  | M3-O1  | M3-O45 | M3-N5  |
|----|--------|---------|--------|--------|--------|--------|---------|--------|--------|--------|--------|--------|--------|--------|
|    | Μξ     | Μα      |        |        |        | Μδ     | Μβ      |        |        |        |        |        |        |        |
| 67 | 8.2571 | 94.3663 | 5.6337 | 0.4624 | 2.5970 | 0.3796 | 33.5970 | 0.0202 | 0.1512 | 0.9280 | 0.0018 | 0.1368 | 0.0000 | 3.5804 |
| 68 | 7.6055 | 94.4778 | 5.5222 | 0.4346 | 2.3453 | 0.3373 | 32.1279 | 0.0177 | 0.1382 | 0.9153 | 0.0018 | 0.1369 | 0.0000 | 3.5285 |
| 69 | 6.9523 | 94.5895 | 5.4105 | 0.4067 | 2.1169 | 0.2989 | 30.8134 | 0.0154 | 0.1263 | 0.8976 | 0.0017 | 0.1363 | 0.0000 | 3.4591 |
| 70 | 6.4205 | 94.6970 | 5.3030 | 0.3835 | 1.9235 | 0.2678 | 29.5915 | 0.0133 | 0.1154 | 0.8891 | 0.0017 | 0.1369 | 0.0000 | 3.4235 |
| 71 | 5.8874 | 94.8047 | 5.1953 | 0.3603 | 1.7528 | 0.2402 | 28.5943 | 0.0114 | 0.1058 | 0.8858 | 0.0017 | 0.1384 | 0.0000 | 3.4097 |
| 72 | 5.4427 | 94.9037 | 5.0963 | 0.3369 | 1.5986 | 0.2160 | 27.5147 | 0.0110 | 0.0963 | 0.8824 | 0.0019 | 0.1398 | 0.0187 | 3.3939 |
| 73 | 4.9971 | 95.0029 | 4.9971 | 0.3135 | 1.4546 | 0.1934 | 26.4959 | 0.0106 | 0.0874 | 0.8693 | 0.0020 | 0.1397 | 0.0685 | 3.3420 |

| 74 | 4.7431 | 95.0525 | 4.9475 | 0.3232 | 2.4487 | 0.3211 | 46.2015 | 0.0185 | 0.1617 | 0.8553 | 0.0020 | 0.1399 | 0.1167 | 3.2872 |
|----|--------|---------|--------|--------|--------|--------|---------|--------|--------|--------|--------|--------|--------|--------|
| 75 | 4.4888 | 95.1022 | 4.8978 | 0.3329 | 2.3805 | 0.3075 | 46.5842 | 0.0186 | 0.1724 | 1.0292 | 0.0024 | 0.1712 | 0.1997 | 3.9537 |
| 76 | 4.3699 | 95.1022 | 4.8978 | 0.3852 | 2.3677 | 0.3010 | 47.0242 | 0.0235 | 0.2022 | 1.0473 | 0.0024 | 0.1778 | 0.2634 | 4.0218 |
| 77 | 4.2511 | 95.1022 | 4.8978 | 0.4375 | 2.4582 | 0.3073 | 49.5611 | 0.0297 | 0.2428 | 1.1209 | 0.0026 | 0.1941 | 0.3465 | 4.3044 |
| 78 | 4.1419 | 95.1068 | 4.8932 | 0.4946 | 2.5597 | 0.3144 | 52.3991 | 0.0367 | 0.3013 | 1.2055 | 0.0030 | 0.2129 | 0.4794 | 4.6275 |
| 79 | 4.0327 | 95.1113 | 4.8887 | 0.5516 | 2.6861 | 0.3239 | 55.8446 | 0.0447 | 0.3686 | 1.2988 | 0.0035 | 0.2338 | 0.6317 | 4.9860 |
| 80 | 3.9522 | 95.1203 | 4.8797 | 0.5707 | 2.6691 | 0.3162 | 55.9562 | 0.0476 | 0.3805 | 1.3367 | 0.0036 | 0.2471 | 0.7060 | 5.1215 |
| 81 | 3.8718 | 95.1294 | 4.8706 | 0.5898 | 2.6337 | 0.3062 | 55.6797 | 0.0501 | 0.3898 | 1.3730 | 0.0037 | 0.2604 | 0.7823 | 5.2504 |
| 82 | 3.8006 | 95.1339 | 4.8661 | 0.5993 | 2.6015 | 0.2992 | 55.4104 | 0.0499 | 0.4017 | 1.4089 | 0.0038 | 0.2737 | 0.8557 | 5.3715 |
| 83 | 3.7294 | 95.1384 | 4.8616 | 0.6089 | 2.5634 | 0.2915 | 55.0078 | 0.0495 | 0.4126 | 1.4408 | 0.0038 | 0.2865 | 0.9291 | 5.4785 |
| 84 | 3.6722 | 95.1339 | 4.8661 | 0.6231 | 2.4968 | 0.2804 | 53.9273 | 0.0485 | 0.4152 | 1.4317 | 0.0041 | 0.2910 | 0.9667 | 5.4233 |
| 85 | 3.6149 | 95.1294 | 4.8706 | 0.6374 | 2.4396 | 0.2705 | 53.0347 | 0.0477 | 0.4190 | 1.4376 | 0.0043 | 0.2984 | 1.0139 | 5.4247 |
| 86 | 3.5674 | 95.1294 | 4.8706 | 0.6469 | 2.3768 | 0.2592 | 51.8387 | 0.0467 | 0.4199 | 1.4897 | 0.0045 | 0.3150 | 1.0959 | 5.5900 |
| 87 | 3.5198 | 95.1294 | 4.8706 | 0.6564 | 2.3728 | 0.2544 | 51.9221 | 0.0467 | 0.4310 | 1.5597 | 0.0047 | 0.3359 | 1.1947 | 5.8221 |
| 88 | 3.4484 | 95.1294 | 4.8706 | 0.6611 | 2.3671 | 0.2466 | 51.9107 | 0.0467 | 0.4386 | 1.6294 | 0.0051 | 0.3574 | 1.2763 | 6.0215 |
| 89 | 3.3771 | 95.1294 | 4.8706 | 0.6659 | 2.3426 | 0.2368 | 51.4857 | 0.0463 | 0.4428 | 1.7453 | 0.0057 | 0.3896 | 1.3966 | 6.3861 |
| 90 | 3.2916 | 95.1339 | 4.8661 | 0.6564 | 2.3212 | 0.2283 | 51.2968 | 0.0462 | 0.4514 | 1.8623 | 0.0061 | 0.4227 | 1.4991 | 6.7254 |
| 91 | 3.2062 | 95.1384 | 4.8616 | 0.6469 | 2.3017 | 0.2199 | 51.1497 | 0.0460 | 0.4603 | 1.9027 | 0.0061 | 0.4389 | 1.5405 | 6.7834 |
| 92 | 3.1208 | 95.1475 | 4.8525 | 0.6375 | 2.2934 | 0.2099 | 51.1922 | 0.0410 | 0.4710 | 1.9400 | 0.0068 | 0.4556 | 1.5807 | 6.8309 |

## Table 33: Sample M shell calculated intensities for 3 MeV protons (part II).

| Ζ  | M3-N4  | M3-N67 | M2-N1  | M2-O1  | M2-O4  | M2-N4  | M1-N23 | M1-O23 | Mα/Mtot | ωΜ     |
|----|--------|--------|--------|--------|--------|--------|--------|--------|---------|--------|
|    | Μγ     | Mm1    | Μζ     | Mm2    |        |        |        |        |         |        |
| 67 | 0.4361 | 0.0158 | 0.3529 | 0.0556 | 0      | 1.7274 | 0.7657 | 0.1171 | 0.6511  | 0.0121 |
| 68 | 0.4322 | 0.0171 | 0.3338 | 0.0535 | 0      | 1.6458 | 0.7332 | 0.1143 | 0.6626  | 0.0129 |
| 69 | 0.4262 | 0.0183 | 0.3170 | 0.0516 | 0      | 1.5741 | 0.6971 | 0.1106 | 0.6738  | 0.0137 |
| 70 | 0.4242 | 0.0200 | 0.3026 | 0.0501 | 0      | 1.5130 | 0.6668 | 0.1077 | 0.6838  | 0.0147 |
| 71 | 0.4245 | 0.0218 | 0.2825 | 0.0475 | 0      | 1.4226 | 0.6511 | 0.1071 | 0.6928  | 0.0158 |
| 72 | 0.4249 | 0.0239 | 0.2645 | 0.0452 | 0.0076 | 1.3411 | 0.6856 | 0.1148 | 0.7015  | 0.0171 |
| 73 | 0.4208 | 0.0257 | 0.2456 | 0.0426 | 0.0258 | 1.2535 | 0.6753 | 0.1150 | 0.7103  | 0.0184 |
| 74 | 0.4152 | 0.0271 | 0.2311 | 0.0408 | 0.0421 | 1.1855 | 0.6632 | 0.1156 | 0.6198  | 0.0198 |
| 75 | 0.5009 | 0.0348 | 0.2293 | 0.0413 | 0.0597 | 1.1822 | 0.6711 | 0.1197 | 0.6155  | 0.0213 |
| 76 | 0.5104 | 0.0372 | 0.2285 | 0.0419 | 0.0773 | 1.1814 | 0.6796 | 0.1247 | 0.6132  | 0.0229 |
| 77 | 0.5471 | 0.0418 | 0.2395 | 0.0448 | 0.0999 | 1.2422 | 0.7245 | 0.1367 | 0.6012  | 0.0245 |

| 78 | 0.5891 | 0.0470 | 0.2490 | 0.0475 | 0.1341 | 1.2951 | 0.7764 | 0.1507 | 0.5880 | 0.0262 |
|----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 79 | 0.6352 | 0.0529 | 0.2650 | 0.0516 | 0.1751 | 1.3822 | 0.8369 | 0.1669 | 0.5728 | 0.0280 |
| 80 | 0.6555 | 0.0566 | 0.2684 | 0.0536 | 0.1893 | 1.3996 | 0.8586 | 0.1763 | 0.5715 | 0.0298 |
| 81 | 0.6747 | 0.0604 | 0.2705 | 0.0554 | 0.2028 | 1.4102 | 0.8711 | 0.1839 | 0.5717 | 0.0316 |
| 82 | 0.6924 | 0.0639 | 0.2734 | 0.0574 | 0.2177 | 1.4232 | 0.8804 | 0.1913 | 0.5718 | 0.0335 |
| 83 | 0.7078 | 0.0674 | 0.2770 | 0.0595 | 0.2335 | 1.4397 | 0.8936 | 0.1996 | 0.5725 | 0.0354 |
| 84 | 0.7018 | 0.0691 | 0.2816 | 0.0617 | 0.2509 | 1.4592 | 0.8982 | 0.2066 | 0.5763 | 0.0373 |
| 85 | 0.7025 | 0.0716 | 0.2861 | 0.0640 | 0.2685 | 1.4780 | 0.8927 | 0.2111 | 0.5793 | 0.0392 |
| 86 | 0.7256 | 0.0763 | 0.2862 | 0.0654 | 0.2817 | 1.4715 | 0.8937 | 0.2167 | 0.5825 | 0.0411 |
| 87 | 0.7575 | 0.0821 | 0.2812 | 0.0656 | 0.2894 | 1.4392 | 0.9058 | 0.2251 | 0.5808 | 0.0430 |
| 88 | 0.7870 | 0.0879 | 0.2792 | 0.0661 | 0.2939 | 1.4145 | 0.9220 | 0.2331 | 0.5797 | 0.0449 |
| 89 | 0.8379 | 0.0964 | 0.2753 | 0.0660 | 0.2962 | 1.3815 | 0.9083 | 0.2335 | 0.5793 | 0.0468 |
| 90 | 0.8864 | 0.1056 | 0.2723 | 0.0658 | 0.2945 | 1.3487 | 0.9025 | 0.2349 | 0.5783 | 0.0486 |
| 91 | 0.8981 | 0.1106 | 0.2703 | 0.0658 | 0.2940 | 1.3219 | 0.8917 | 0.2349 | 0.5787 | 0.0505 |
| 92 | 0.9085 | 0.1154 | 0.2652 | 0.0650 | 0.2900 | 1.2804 | 0.8856 | 0.2360 | 0.5786 | 0.0522 |