e AN

AAEC/M105

CIMI05

vy

AUSTRALIAN ATOMIC ENERGY COMMISSION
RESEARCH ESTABLISHMENT

LUCAS HEIGHTS RESEARCH LABORATORIES

AN INTRODUCTION TO PASCAL PROGRAMMING
FCR NUMERICAL COMPUTATIONS

by

J.M. BARRY

MAY 1986

ISBN 0 642 59829 0

i * _

PREFACE

These notes arose out of a series of Summer Schools conducted by the AAEC for Higher School Certificate stu-
dents who were about to enter their final school year. The approach adopted avoids formalism and introduces
quickly to the students sufficient programming concepts to enable them to undertake scientific problem solving
with the help of tutorial sessions.

The notes have been modified extensively so that the reader can work alone through this introduction, attempt-
ing exercises designed to build up programming and mathematical skills. The reader needs a knowledge of cal-
culus to work through all the practice exercises; however, School Certificate mathematics is more than sufficient
for understanding the expository sections.

The examples and the orientation of the presentation are very much mathematical probiems. There is no
attempt to develop computer games wiiting skills since, in the author's opinion, more than encugh material is
avatlable elsewhere.

The Pascal programming language is very extensive and contains many more facets than are considered here.
These features involve more intricate and interesting aspects of data structures, most of which are not necessary
for numerical scientific problem solving. Their omission is completely intentional to keep the volume of material
presented suitable for a basic first course in computational computing. The students who work successfully
through these notes should be able to come to terms with the other concepts by extending their reading (for this
the student is referred to Welsh and Elder [1979]).

The material presented here could also be programmed in other scientific computer languages such as FOR-
TRAN or BASIC. The programming methodology with languages such as Pascal needed to achieve the same goal
can be very different. Hopefully, the student who works through this presentation will be capable of thinking in a
modern structured sense and not merely rewriting FORTRAN or BASIC concepts in Pascal.

National Library of Australia card number and 1SBN 0 642 59829 0

p—y

CONTENTS

INTRODUCTION

2 OVERVIEW OF PASCAL PROGRAMMING
3. ENTRY OF PASCAL STATEMENTS TO THE COMPUTER
4, ARITHMETIC DATA

5. VARIABLES

6. SIMPLE INPUT AND QUTPUT (1/0)

7. ARITHMETIC OPERATIONS AND EXPRESSIONS
8. STATEMENT SEPARATOR

9. SUPPLIED MATHEMATICAL FUNCTIONS
10. CONTROL STATEMENTS

11. CONDITIONAL STATEMENTS

12, SUBSCRIPTED VARIABLES

13. PROCEDURES AND FUNCTIONS

14, CONSTANTS

15. MORE ABOUT CONTROL OVER OUTPUT
16. MORE ABOUT INPUT

17. NON-NUMERIC DATA AND VARIABLES

18. CASE STATEMENT

19, A COMPLETE PROGRAMMING EXAMPLE
20. ERRORS IN PROGRAMMING

21. INTERACTIVE MODE OF RUNNING

22. PRACTICE EXAMPLES

23. REFERENCES

Appendix A Answers to selected questions

Appendix B Use of non-Pascal special functions and procedures

-

W~ nm b A

16
19
21
24
24
25
26
28
30
33
34
34
43

45
54

1. INTRODUCTION

Each digital computer is capable of obeying a number of basic instructions. These instructions vary for different
computers, but they have several common attributes:

{a) The ability to perform the four arithmetic operations [addition, subtraction, multiplication and division}.
(b} The ability to perform logical operations (is a = b?).

{c) The ability to perform 'housekeeping’ instructions {(e.g. moving numbers from addressable memory to
registers, where arithmetic and fogical operations may be perfarmed on them.

For a programmer to communicate with the computer at this most fundamentai level, it is necessary to develop
programs in the basic machine language of the specific computer. in the early days of computing, scientists and
mathematicians had to concern themselves with the intricacies of binary coding. The long delays and
inconvenience of this form of user-machine communication accelerated the introduction and growth of
programming languages that the problem solver could use more readily. Many languages (FORTRAN, BASIC,
COBOL, ALGOL, PL1, APL, ACL, Pascal, etc.} have been developed for scientific, commercial and other applications.

Pascal is a powerful modem computing language which is suited to most computing tasks. These notes
consider a restricted subset of Pascal suitable for handling numerical computations arising in scientific calculations.
In fact, they may well be thought of as a programming conversion guide for the scientific FORTRAN user.

There are no computers that obey programs written directly in Pascal. It is usually necessary for programs in
‘high level’ languages, such as Pascal, to be translated into an appropriate set of machine language instructions.
This process is known as compilation.

Pascal . Machine
Program T Compiler Program

Figure 1 - Compilation of a Pascal program

The Pascal source statements are translated into a set of machine language instructions by a Pascal compiler
{Figure 1}. The compiler is itself a program usually supplied by the machine manufacturer. In these notes, the
Pascal language described is appropriate for a compiler developed partially at Lucas Heights. (Cox et al 1980).
The compiler (Pascal 8000} first checks to ensure that the Pascal statements obey the ‘rules’ of the language
(syntax analysis), then supplies a set of machine instructions that will imptement the specifications of the
programmer. When the compilation process is completed, the machine instructions generated may be executed.
The finer details of this process are not of immediate concern, since the purpose here is primarily to use the
computer as a tool for mathematical problem solving.

2. OVERVIEW OF PASCAL PROGRAMMING

Let us first consider the steps involved in solving a sampie problem, and the Pascal program that could be
developed to carry them out. When this is done, we shall examine the various Pascal statements in closer detail.

Problem If $30,000 is borrowed at a rate of 13% {(monthly reducible} and repayments of $400 each month are
made, then how many years will it take to repay the loan?

Before we can program a digital computer to solve a problem, it is necessary for us to be able to detail logically
the steps that are needed to solve the problem, in much the same way as we would if we were going to tackle the
problem with a desk calculating machine, slide rule, or pen and paper. Some people find it helpful to draw a flow
chart (Figure 2) showing the steps involved, whereas others prefer to visualise all the steps in their mind.

L Stant

Read in amount borrowed,
interest rate and
monthiy repayment

Set monthly counter
to zero

Convert interest rate to
fractional rate/month

loan been
\. repaid

NO

Calculate interest
after 1 month

Add interest to
amount borrowed

Subtract loan
repayment

increase monthly
counter by 1

Convart number of
months to years

1

Print out number
of years

Finish

Figure 2 Flow chart for compound interest problem

-3-

In common with most flow diagrams, Figure 2 has a preliminary section in which certain items are initialised.
The three data items, amount borrowed, interest rate and monthly repayment, are read from a data input record.
The monthly counter is set to zero. The repetitive section follows and is executed, provided that the loan has not
been repaid. The monthly interest is calculated and added to the amount borrowed. The loan repayment is
subtracted and the monthly counter is increased by one. When the loan has been repaid, the number of years is
calculated and the result printed out. The result most probably will involve a decimal portion.

From this flow chart, the following program can be coded. At this point we will not concern ourselves with the
formal rules for coding but just look at the end product (Figure 3}, s0 do not worry 100 much ahbout the details at
this stage - just look at the overall structure and see how it relates to the flow chart.

{ program to determine number of years to repay a loan)
program repayment{input, output);

var principal, rate, payment
no__of__vyears,
interest__rate, monthly__interest : real;
month__counter : integer;

begin

readln {principal,rate,payment);
month__counter := 0;
interest__rate := rate / {100 * 12);

while principal > 0 do

bagin
monthly__interest := principal * interest__rate;
principal := principal + monthly__interest;
principal := principal - payment;
month__counter := month__counter + 1

end;

no__of__vyears := month__counter / 12;
writeln {* number of years = ",no_of__vears)

end.

The data input record sufficient for this problem would be
30000.0 13.0 400.0

Figure 3 Sample program and data for campound interest problem

In this example, the principal, interest rate and monthly repayment were read from a separate data input
record. The separation of program code from prepared data input is frequently a good programming practice. in
this way, someone else can use the program simply by preparing data for it They do not have to understand
programming or know anything about the intemal workings of the program to modify the data.

The alternative way of specifying input data is to replace the
readln (principal,rate,payment);
statement with three assignment statements:

principal := 30000.0;
rate := 13.0;

payment := 400.0;

Now that some idea of how Pascal programming statements fit together has been acquired, we can investigate
the rules for the use of the Pascal language. Rather than give a formal definition of each Pascal concept, the
approach adopted is to demonstrate its use through an appropriate example.

3. ENTRY OF PASCAL STATEMENTS TO THE COMPUTER

Pascal programs may be entered into a computer by typing them in, line by line, through a terminal connected
to the computer or by punching them on data cards which are read through a card reader. The keyboards of all
input devices vary; for example the card punch machine does not support lower case letters and some special
symbaols. As visual display terminals (VDT) are these days the most common mode of entry, the programming
examples use lower case characters. To enter the same program with punched cards, it is sufficient to substitute
upper case letters and special symbols where appropriate. Should your terminal not possess ali the special
characters, it will be necessary for you to enter alternative symbols.

The following characters are available in the Pascal 8000 language.

(i} 26 capital letters A BGC .. B 2Z;
(i) 26 lower case letters &, b, c, ..., Z;
(i 10 numerals 0.12..9
{ivy 20 special characters +, -, * /, ., ()= < > _.L1LLLE...;
{vi blank

Pascal statements may be typed anywhere on the input line, with more than one statement appearing on each line
if appropriate. The free form of the fayout permits statements to be indented. This assists the development of
readable code, a programming practice which is to be encouraged.

To aid program documentation, comment statements ‘may be incorporated in the code. Comments may span

several lines and are basically ignored by the compiler. All statements enclosed within the symbols { and } are
treated as comments:

{this is a comment in Pascal}

Should the symbols { and } be unavailable, an alternative set {* and *) may be employed. Pascal 8000 permits the
use of all symbals other than (*, { and ; within comments.

4. ARITHMETIC DATA

Let us consider two different arithmetic quantities that are sufficient for handling data {numbers) in most
scientific problems. it is essential that the beginner clearly understands the difference between the two types :

{a} INTEGER (or fixed point) constants:
a whole number without a decimal point whose absolute value is < 237 - 1={2147483647).

Valid integer constants: O 5 +367 7005192
invalid integer constants: 27. 5,132 9812735997 270

(b) REAL |or floating point} constants:

up to sixteen decimal digits with a whole number part, a decimal point, a fractional part and an optional
exponent. The absolute magnitude is approximately 10778 to 1075,

Valid real constants:
50 06 40.61 791 53F+2(=5.3 x 109
5.3E2(5.3 x 103 -0.051E-03 {-.051 x 1079

Invalid real constants:
1 3471.2 1.E 6. .7

Distinctions are carefully drawn between the two types of constant for electronic rather than mathematical
reasons. The electronic "hardware’ necessary for INTEGER arithmetic operations is less complex and consequently,

-6 -
for most machines, it is faster than that used for REAL arithmetic. By performing those operations that require no
decimal point in the integer mode, considerable time savings can be made.

in addition to arithmetic data, Pascal supports other forms, for example character type and even more complex
structures and types of your own making. Support for such data is of great advantage for non-numerical
computing, but for this introduction to Pascal, these data constructs are avoided {except for a brief mention of
character variables in Section 17).
5. VARIABLES

A variable is a symbolic name used to identify a data item that will occupy a location of directly addressable
storage. The actual address of this location is assigned by the compilation proce . If we move a number into a
variable, it will replace the previous contents of that location:

time := 0.0

This places zero in the location reserved for time. When a transfer is made from a location, the previous contents
remain unaltered:

X := tima
This assigns the contents of the location reserved for time to that reserved for x without altering the contents of
the location associated with time.

The := operation is interpreted as the assignment of the resuit of the right hand expression to the left hand

location. Consequently, an expression such as

a:=a1+1.0
does not yield an algebraic result but rather is interpreted as increasing the old value associated with a by 1.0 to
give a new result also called a. The old value of a is. of course, lost.

Variable names may be of any length, however, only the first eight characiers are significant in Pascal 8000.
Consequently, variable identifiers with the same first eight characters are considered to be the same identifier in
this Pascal implementation, Variable identifiers may be composed of letters or digits but the first must be a letter.
Valid variable identifiers are

time , x3b , 5 , t

For ease of identification, very long variable names such as

thisisalongvariable

may be entered as

this__is__a long__variable
The underscore '__' is not part of the variable name itself, it is ignored by the Pascal compiler and merely serves to
assist in understanding the program.

In Pascal the use of reserved words as variable identifiers is not permitted. The reserved words {such as for,
while etc.) serve special functions and are introduced in later sections. These words are shown in bold type for
convenience, but there is no such distinction made when they are entered at the input terminal.

For immediate purposes, we restrict the use of variables to REAL or INTEGER type. All variable names and their

type must be defined by use of the declaration command var:

var X ¥ Z . real;
i, counter - integer;

-8 -

Unlike some other languages there are no default options for the type of variable. All variables used must be
declared and. although this may seem annoying at first sight, it reduces possible confusion when the body of code
is written. For example, it avoids hours of wasted effort spent in debugging a program when time1, for example, is
incorrectly entered as timel (a not infrequent type of error).

Variable names may also be used with subscripts in Pascal. Such variables can be used to represent vectors
and matrices which the user may have encountered in mathematics courses:

v[3] or v{.3.) is the Pascal representation of the vector component
V3_|

a[3.4] or a(.3.4.) is the Pascal representation of the matrix element
834.

Unfortunately, the symbols [,] are unavaitable on the card punch machines, so the alternative notation is necessary
should there be a need to use subscripted quantities. (Further discussion of SUBSCRIPTED variables is delayed
until Section 12.)

6. SIMPLE INPUT AND QUTPUT {I/0)

One way of assigning values to variables is by the direct use of an arithmetic expression:
X = 6.3

Should we wish to alter the data on which a program is to operate without changing the program (a most frequent
requirement, particularly when non-programmers are going to prepare data to run someone else’s program), then a
readln statement may be used.

The Pascal procedure readin may be invoked to read values from any specified input file into a set of listed
variables. The input file {along with an output file} is identified through the program declaration, e.g.

program repayment (input, output);

The declaration ‘input’ refers to the ordinary input stream of data when a Pascal program is submitted in batch
mode, whereas ‘output’ refers to printout of data on the line printer. In batch mode the user has no contact with
the job after it is submitted; the compilation and execution phases are carried out without user intervention. The
output will be printed eventually on the line printer and the user can coliect it when ready. Any data required by
the program must be prepared in advance for batch submission of the job. The data for the input stream must be
separated from the Pascal program, which is always positioned first.

The input data consist of a series of data records. These are either separate lines of input data for a terminal or
separate punched cards. Each input record may contain more than one item.

An alternative mode for running the job is available; this is the interactive mode which gives the user the
ability to communicate with the job while it is executing. In this mode, the input data need not be prepared in
advance, since the program can prompt the user for appropriate data. For the present we shall ignore this mode of
program operation. (Details of interactive operation are given in Section 21.)

The readin procedure initiates the reading of a list of data items. In the sample example of Section 2
readln {principal, rate, payment)

causes three numbers to be read and stored in the varizbles principal, rate and payment. After the third item has
been transferred, a subsequent read will commence with a new input record, so any additional information which
may have been typed on the last record read is skipped.

For the loan repayment problem in Section 2, the three data items are on the same input record; the items are
separated by at least one blank character. It is possible, however, to have the data on a number of input records.
In this case, sufficient input records are read so that three data items are transferred. It is important that each data

-7 -

item corresponds to the type of variable for which it is intended.

Messages and output from your program may be directed to the line printer by the writeln procedure. For
example the statement

writeln (' number of years = ', years)
might display
number of years = 1.1666666666666667E+01

It can be seen that this form of output, known as free-format output, has the advantage that the Pascal rules for
its use are easily understood. There is not a great dea! of control over the layout and it emerges frequently in an
untidy form. This is unfortunate, particularly when printed output for publication is required. The free-format form
of output is sufficient for the user to get under way, developing the first programs. For those who wish to know a
little more about I/O control to obtain ‘prettied up’ output {and it is not all that difficult), see Section 15.

7. ARITHMETIC OPERATIONS AND EXPRESSIONS

There are six ordinary arithmetic operations available to Pascal users:

(i} addition + eg a+b
{iiy subtraction - eg. a-b
(il multiplication * eg. a'*b
(iv) division {integen) div eg adivb
{v) division (real) / eg al/b
{vi} exponentiation ** eg a**bifor a

Expressions may be enclosed within parentheses, as in normal algebra:

{atb){ctd) " {a+b)*{ctd)
{a+b)? (atb)**2

2 a/(b*c)

be

Parentheses are necessary to prevent two operators from appearing next to each other (should such a combination
be possible):
x*-y must be coded x*-y)

The sequence of operations in expressions is determined from the following hierarchy which is consistent with
normal mathematics:

(‘) E 1 3
(ii) * / div left to right precedence if they occur together
(iii) + - left to right precedence if they occur together

Consequently, the expression
x+(y/a-B30*uw+p*(s**4)/ 30

could have been correctly abbreviated to
x+ty/a-30*u+p*s*4/30

Pascal also features the mod (division remainder) function as an arithmetic operator rather than as a special
function. it has equal precedence with multiplication and division. Consequently,

4 * 5 mod 3 div 2

returns the integer value 1 because it is interpreted on

{20 mod 3) div 2

The integer variables and constants deserve special attention. Integer division of one integer by another results
in the truncation of any fractional remainder.

var i, k : integer;
begin

i:=9;

k:=i div2

would result in k taking the value of 4. This property can often be exploited to the programmers advantage
when testing for even integers:

k:=i-idiv2*2

would assign 1 to k if | is odd, and O if even. The expression i/2, however, would be performed as a real
division even though in this case both operands are of integer type because / is a real division operator.

If an expression consists of different types of operand, the mode of the result is determined by the type of
operand at various stages of the calculation. In the case of integer and real modes, the latter is considered to be
the higher mode, e.g. for

var X real;
¥ : integer;

the expression x*y would be evaluated in the higher mode and a real result computed. For
x*(y+3)
the addition is done in the integer mode and the multiplication is performed in real mode. In assignment

statements, the mode on the left should be the same as that on the right, with the exception that it is possible for.
an integer quantity to be assigned to a real variable.

X:=y
is permitted, however
y:i=x

is not accepted by Pascal.

Should the user wish to assign a real quantity to an integer variable the trunc {or round) functions (Section 9),
y:=trunc(x) or vy := round(x)
should be used to remove the decimal component.

8. STATEMENT SEPARATOR

Statements in Pascal may be separated from each other by the use of a semi-colon {;). This permits more than
one statement to appear on each line. The semi-colon does not form part of a statement and should not be
interpreted as a statement terminator. Its function is to separate statements in a block of code or to separate one
block from another, as shown in the following examples:

lij begin
x:=yt+z
t:=x+b {separator not necessary)
end.

(i) begin
ba;;in
em.i; {separator necessary to separate blocks)
be;;in

end (separator not necessary)
end.

To someons new to programming. the subtlety of this distinction may seem puzzling to say the leastt Should
there be confusion about when a ; is required, remember that unnecessary separators are treated by the Pascal
compiler as null statements and will not lead to any harm. Take great care, however, with use of inappropriate
separation in the if-then-else construct {Section 11).

9. SUPPLIED MATHEMATICAL FUNCTIONS

As there are a number of special mathematical functions or operations that are common to many problems, the
Pascal compiler provides these as part of the normal system. To calculate the exponential function x=e' for a
particular value of t, all that needs to be done is to code

X 1= exp(t)

To use most supplied mathematical functions, it is only necessary to follow the function name by an argument
enclosed in parentheses. The result will be returned as though the function name designated a variable in the
program. The argument may be a variable, constant or arithmetic expression, e.g.

a:= expla - ¢) + sqrt{15.0)

The following tabie lists frequently required functions supplied by the Pascal compiler.

Mathematical Function Function Name {Argument)
square root, v x sqrt({x)

square, x° sqr{x)

exponential, e* explx)

natural logarithm, log,x {or In x} In{x)

sine of an angle (in radians), sin x sin(x)

cosine of an angle {in radians), cos x cos(x)

arctangent (result in radians), tan~ ' x aretan{x)

absolute value (real numbers), x abs{x)
truncation trunc(x)
rounding round{x)

The way in which these functions work is clear enough except for the trunc and round functions. Trunc(3.7)
returns 3, trunc{-3.7) returns -3; round(3.1) is 3, round(3.9} is 4 and round{-3.8} is -4.

10 -

In addition to the standard functions, we need special functions to undertake some of the preliminary exercises
at the end of these notes. These functions, which are not part of the Pascal compiler, are supplied in special
program libraries on the AAEC's computing facility at Lucas Heights. {Users at other facilities should find that there
are equivalent functions). Because they are additional functions, it is necessary for them to be identified by an
appropriate declaration at the start of the Pascal program (an explanation of such details is given in Appendix B).

Two special functions necessary for the preliminary exercises are the random number generators. The first,
rand, generates a sequence of random numbers starting each time with the same number, so that the sequence
generated can be repeated st a later time. It is a little like having purchased a printed book of random numbers
{Yesl Such things are available.) and commencing each time at the start. This can be of use when developing and
testing a new program, in which case a constant environment may be of assistance. The second function, rnd,
produces a random sequence of random numbers. The user may find that ‘this fits in more nicely with basic
intuition.

Both generators can be invoked in a similar manner;
y = rand y = rnd
Each results in a random number being assigned to the variable Y: _where the random number lies in the range
0<y<1,

(n.b. the values O or 1 are never returned by the random number generator.)

Uniike the previous functions there is no need to pass an argument to the random number generator.

10. CONTROL STATEMENTS

Execution of a program will commence at the first executable statement and, unless a transfer of control
statement is encountered, proceed in order through subsequent instructions. The simplest means of transfer of
control is through the goto statement.

program list [input, output);

label 1;
var x : real
begin
1: readin (x);
writeln {x);
goto 1
end.

This program will cause input records with one number punched per record to be read and listed on the printer
with no escape mechanism until the supply of data racords was exhausted. When this happens, an error condition
is raised by an attempt to read a non-existent record. At that point, the program will fail. Although the goto
statement allows transfer of control, it is of little real use on its own.

Most early high-level computer languages, because their design reflected computer architecture, relied heavily
on some form of gote statement. This seemed appropriate at the time because the idea was simple and easily
implemented by compiler writers. Much modem thought in language design is entirely opposed to the use of goto
statements, mainly because they make large programs difficult to follow and increase the possibility of incorrectly
specifying the required operations. This is particulariy true for program systems developed in a team environment.

Considering that today, computer program development usually involves more cost than the machine itself, it is not
surprising that well-structured, easy-to-follow and sslf-documenting programs are demanded. Pascal goes a long
way towards satisfying these demands. It does, however, permit the use of a goto statement but its use is
discouraged should another construct be available {which is nearly always the case). Should you find a need to put
goto statements in your program it is most probable that you have not employed a modern structured approach to
program devélopment. Consequently, little more attention will be paid to the goto statement on its own or as an
adjunct to the if construct.

The real value of a computer lies in its ability to repeat a set of statements until the task at hand is completed.

=11 -

A typical task might be to print out all the names and addresses from a data file. The statements to do this must
be executed repeatedly until the required task is completed. A group of such statements is commonly referred to
as a loop. Three typés of Pascal looping are considered:

{i) while
{ii) repeat
{iiiy for .

In the compound interest example, we saw an example of a while statement, which allows a block of
statements to be repeated until a certain condition is satisfied. In this instance, the loop was repeated while the
loan was not repaid {i.e. while the principal > 0}. When the principal was repaid, instead of the loop being
repeated, control passed immediately to the statement.

no__of__years :== month__counter / 12;

following the end of the repeated block, which is identified through the begin ... end construct.

The while statement is used when the number of times the loop needs to be repeated is not known in
advance. In more formal terms the while statement may be described

while e do s,

where e is a logical expression and s is a single or block of statements that are repeated while the logical
expression € remains true.

Supppose we wish to evaluate and print out y given by
y = x*+x2+x+1
for x =1.,1.1,1.2....,10. The following program would suffice:

program evaluate__y (output};
var X, y @ real
begin
X :=1.0;
while x <= 10.0 do
bagin
y:=10+x*{1.0 + x* (1.0 + x):
x:=x+0.1;
writeln {" y= ".y)
end
end.

. The block form of a while statement is shown in Figure 4.

evaluate
e

¥ true

execute false
sequence of
statements (5)

i

Figure 4 Schematic representation of while

-12 -

The repeat statement (Figure 5) similarly offers a means of repeating a loop. The repeat statement has the
form

repeat s until ¢

Here s represents a single statement or set of statements that are executed repeatedly until the logical expression
e is satisfied. In schematic form, the repeat statement appears as

execute
sequence
s

evaluate
e

Figura 5 Schematic representation of repeat

Like the while statement, the repeat statement can be used when the number of times a loop will be repeated
is not known in advance. It has been argued that any task which can be performed with a while statement may
also be done with a repeat, hence a language such as Pascal need consider only one form or the other. There is
an essential difference, however, between the while and repeat statements. The body of code must be executed
at least once for the repeat because the test comes at the end of the loop. It is possible for the body of the while
to be avoided completely because the test is at its head.

Now consider the previous example, performed this time with the use of the repeat statement.

program evaluate__y {output);
var x, vy : real
begin
x:= 1.0
repeat
y: =10+ x*{1.0 + x* {1.0 + x));
Xx:=x+0.1;
writeln (" y=", y)
until x > 10.0
end.

The finai type of looping mechanism considered here is the for statement. Unlike the while and repeat
statements, for is used only when the number of times the loop is to be repeated is known in advance. One form
of for statement is

for control variable:=initial expression to
or

down to final expression do s

For the computing tasks considered in these notes, the control variable is of the integer type and the initial and
final expressions must yield values of the same type. The control varable must not be altered in the subsequent
block. Again s represents a single statement or sequence of statemsnts {a block) that are executed repeatedly,
with the control variable first taking the value of the initial expression and then being increased (or decreased) in

-13 -

single steps until the block is repeated for the final value of the expression. The schematic form of the for
statement is given in Figure B.

control variable <= initial value

is)
Q\trm variable = final expression? '

{ ves

execute
saquence

s no

increase control
variable by 1

is
control variable
=< final expression]

true

false

Figure & Schematic representation of for-to-do

Should the value of the initial expression exceed that of the final expression, the do block is avoided in the
for-to-do construct. (It is avoided similarly in the for-downto-do form if the initial expression is already less than
the final value.)

The initial and final values for the for construct are evaluated once only — on entry to the for statement. No
further evaluations are carried out on each cycle and changes during execution of the do block to any of the
variables that comprise these expressions do not affect the values assigned to the control variable.

The control variable is changed implicitly on repetition of the do block and no attempt should be made to alter
its value within the body of the block. When the for statement has been completed, the control variable becomes
undefined: this means that the programmer cannot make any assumption about its vaiue. Before the control
variable c¢an be used again it must have a value assigned to it.

Consider now an example showing the use of the for loop. Suppose our problem is to find the sum of the first
20 integers, ie. 1 + 2 + 3 + .. + 20, and to print out a running sum as we proceed. Ignoring any appeal to
mathematical analysis, the following code would be sufficient:

program sum20 (output);

var sum, i : integer;
begin
sum = ;
fori:=11to 20 do
bagin
sum = sum + i;
writeln (* sum of *,i, * integers is ",sum})
end

end,

-14 -

Of course, it is possible to have coded the above example in terms of the while or repeat structures. The code
for the while construct would be

program sum20 {output);
var sum,i :@ integer;
bagin

sum :=(Q;

=1

while i < 21 do

begin
sum := sum + i;
writeln (" sum of ".i," integers is ’,sum};
ir=i+t|
end
end.

and for the repeat construct it would be

program sum20 (output);

var sum, i : integer;
begin
sum = Q;
i: =1
repeat
sum = sum + i
writeln (" sum of i’ integers is ',sum);
=i+ '
until i > 20
end.

It is obvious that the code for the while and repeat constructs is a little longer than that of for. This is becauss
the automatic steps of the for loops (ie. the incrementing and testing of the control variable} must now be
undertaken in more specific terms.

As & further example, consider the problem of finding the mean of ten numbers. Let us assume that the
numbers are real and that they are typed one number per input line. Because we know, in advance, the number of
times the loop must be repeated, we shall use the for construct.

program average (input, output);
var mean, sum, x : real;

i : integer
begin

sum = 0.0;
fori:=1!to 10 do
begin

readln (x);

sum := gum + x
end;

mean := sum/10.0;
writeln (" average = ', mean)
and.

Sometimes it is necessary to nest one loop inside another. Suppose we have 100 input data records, with one
number typed per record, and our aim is to find the mean of each group of ten and print out that value. The
following listing is a complete program capable of doing this - for loops are used because the number of times
repetition is required is known in advance.

-15 -

{ program to find the means for 10 groups of 10 numbers }

program avg {input, cutput);
var x, sum, mean : real;

[: integer;
begin
fori:= 1 to 10 do
beagin
sum := 0.0;
forj:=1to 10 do
begin
readIn (x);
sum := sum + x
and;_

mean : = sum/10.0;
writeln {* average of group ‘i, is ", mean)

end
end.

The ioops function so that the inner counter will vary the maost rapidly, ie.

i=111..1222..2..1010

=123..10123..10..910

Let us consider further the logical expression e that is used with the while and repeat statements. A logical
expression returns the value of TRUE or FALSE. For the present, we restrict use of the logical expression to testing

the equality or inequality of arithmetic expressions. The simplest logical expression can be constructed with the
following relational operators:

< lass than

> greater than

= less than or equal to

= greater than or equal to
<> not equal to.

The expressions

principal > 0.0

x <=y

i <>

x + sqrt (2) <= sin (y)

are simple forms of logical expressions returning a TRUE or FALSE (Boolean) value.

Frequently we wish to camy out more than one logical test at a time. This can be done by combining logical
expressions with one of the following logical operators:

and both expressions must be TRUE to return a TRUE resuit
or result is TRUE if either expression is TRUE.

Suppose we have a series of input data records of indeterminate number, and that three real numbers are typed
on each record. Does each trio of numbers possibly constitute the sides of a triangle? The following code will
read each data record in turn, test the possibility that each triplet forms a triangle and stop when a record is
encountered with numbers that do not correspond to the sides of a triangle.

-16 -

program triangle (input, output);
vara b, c : real
begin
readln {a,b,c);
while {a+b>c) and (a+c>b) and {b+ec>a) do
begin
writeln (" triangle possible for ‘,a,b,c);

readln {a,b.c)
end;

writeln (' finished test)
end.

evaluate
e

* TRUE
Y

FALSE
execute
sequence

s

'

Figure 7 Diagrammatic representation of if-then

In this example, a for loop is not appropriate because the number of repetitions is unknown. The repeat
structure would have been inappropiiate because it is necessary to execute the body of the loop before the logical
test is encountered.

Should we have a complex logical expression involving both and and or operators, it would be necessary to
have rules for precedence of evaluation. Like the rules for arithmetic operators, expressions enclosed in
parentheses are evaluated first; and has a higher precedence than or, and evaluation proceeds from left to right
when operators are of equal precedence.

11. CONDITIONAL STATEMENTS

It is frequently necessary to execute a single statement dependent upon some condition, or at some point to
execute one of a number of possible statements dependent upon some condition. The if statement of Pascal
{which comes in two basic forms) may be used to achieve this end:

“(a) if e then s
(b) if e then s else ¢

where e represents a logical expression, and 5 and ¢ represent single statements or blocks of code to be executed,

-17 -

depending on the result of the logical expression. The diagramatic representation of the simpler form (a) is shown
in Figure 7.

Imagine for a moment that there was no absolute value function (abs) and that we wished to implement our
own code to take the absolute value of a number when read from an input record; the following lines would then
suffice:

readin {x);
if x < 0.0 then x:=-x;
writeln {x);

When a value of x is read that is negative, the value of x is negated. When a positive value is read for x, the
negation operation is avoided altogether and control passes directly to the writeln statement.

The more involved form of the if statement (b) is represented in schematic form in Figure 8: where a two-way
selection is how possible, depending upon the value of the logical expression, Suppose we wish to read ten real
numbers and find separately the sum of those that are negative and positive. The if-then-else construct enables us
to do this very neatly. :

/ evaluate \
N~

TRUE FALSE
{then) (else)
axecute axecute
sequence saquence
s t
i il

Figure 8 Diagrammatic representation of if-then-else

program posneg (input, output);
var X, sum__positive, sum__negative : real;
[integer;
bagin
sum__paositive := 0.0;
sum__negative := 0.0;

for i :=ito 10 do

-18 -

begin
readin (x);
if x > 0.0 then sum__positive := sum__positive + x

else sum__negative := sum__negative + x
end;

writeln {* positive ',sum__positive, negative .surn__negative)

end.

Note that the else is not a separate statement, consequently there is no separator ;) between the then and the
else clause.

The if-than-else construct can be made to do more, as the following example indicates, Suppose we wish to
test that three numbers on the input record correspond to the lengths of possible sides of a triangle, and to print a
message to this effect along with the perimeter of the triangle. The following code shows how & block of
instructions can be executed conditionally as part of the then clause of an if statement.

Naturally blocks may be used for the else clause as well.

program triangle (input, output);
var a, b, ¢, perimeter : real;

bagin
readin {a.b,c);
if (a+b>c) and (b+c>3a) and (a+c>b) then

bhegin
writeln {* triangle possible for ',a,b,c);
perimeter :=a + b + ¢
writeln {' perimeter is ", perimeter)
end]
alse writeln (a.b,c,” do not form triangle’)
end.

Suppose we wish to decide whether a, b and ¢ correspond to the sides of a triangle, then determine if the

triangle is equifateral, isosceles or scalene. To do this, the if statements may be nested, as indicated in the
following code:

program triangle {input, output);
var a, b, ¢ : real

bagin
readin {a,b,c);
if {a1+b>c) and (b+c>a) and {(a+c>b) then
if {a=b} and {b=c) then
writeln {* triangle equilateral ')
else if (a=b) or {b=c) or (a=c) then
writeln (" triangle isosceles’)
else writeln (" triangle scalense’)

else writeln {' a,b,and ¢ do not form a triangle’)
end.

At first sight, the idea of a nested if may appear to be ambiguous. For example
if e, then if e, then s, else s,

needs special rules. In Pascal, the above construct is interpreted as though it ware written

if e, then
begin
if &, then s,
olse s,
end

-19 -

Consequently, the execution of s, is dependent upon e, (as well as e,). If we wished to have s, independent of
e, (ie for s, to depend directly on e, it would be necessary to code the expression as

if 2, then
begin

if e, then s,
end
else 5,

it is not necessary to lay out the code as shown above; it could all have been typed on one line. however, itis far
easier to understand in the form shown.

12. SUBSCRIPTED VARIABLES

Many mathematical operations require the use of vectors and matrices. Pascal supplies a means of handling
one, two or higher dimensional arrays. For the simplest array (the one-dimensional vector), the i*" element of the
vector v (v;) is represented in Pascal as v[i]. (Should your input device not feature the symbols [], then v{.i) is an
alternative form of input) Elements of an array or vector can be used in Pascal in the same way as ordinary
variables:

vii] ;=0 the i element of v is set to zero
a := v[il + c[j] - d[3]
vi-1] := v[3%kp-7]

For the range of problems considered here, the subscripts used to refer to vector or array elements are
restricted 1o integer type. They may be constants, variables or expressions. The Pascal compiler reserves one
location to store non-subscripted variables. As subscripted variables take one location for each array element, it is
necessary for the programmer to specify for the compiler the maximum number of elements associated with each
array. This is done through the non-executable var statement. For example, suppose we wished to associate 15
locations with the vector v {i.6. v;,V,,....¥;5), then a declaration could be

v: array [1..18] of real,
if v were to contain 15 real elements. The loop
for i := 1 to 8 do v[2*i-1] :=0.0

would set the odd components of v to zero. The subscripts in Pascal may be non-positive: for example the
declaration

x: array [0..16] of real;

would associate 17 elements with the vector x, the first being identified by x[0].

It is usually easiest for students of mathematics to associate subscripted variables in a computer language with
the mathematical concept of an aray or vector. This approach is used for this presentation. in the commaercial
programming world, where mathematical applications take second place to business needs, it is worth noting that
subscripted variables still play an essential role. They no longer have the obvious mathematical meanings, and
frequently the pregrammer has little {if any) idea of what constitutes a vector or matrix. Pascal supports many other
array concepts, however, these possibilities are ignered here in favour of the ordinary mathematical outlook.

The next example demonstrates how a vector may be used to calculate the mean and standard deviation of a
set of ten numbers. These numbers are read from ten input records (/. e. one number per record):

Standard deviation

- 20 -

{ calculates the mean and standard deviation of 10 numbers }

program stats (input, output);
var x ¢ array [1.10] of real;
sum, avg, sumsgq, sdev : real

i . integer;
begin
fori:= | to 10 do readin {x]i]);
sum :=0.0;
fori:=11to 10 do sum := sum + x[i};
avg := sum / 10.0y
sumsq := 0.0;
for i := 1 to 10 do sumsq := sumsq + sqr(x[i] - avg);

sdev := sgrt{sumsq/9.0);
writeln (" mean and standard deviation are *,avg,sdev)
end.

Here we use the array x to store ten numbers before finding the mean and standard deviation. Before employing
vectors in a program, make sure they are really necessary. In a previous example [Section 10) the mean of a set of
numbers was required. There was no need in that case to retain the ten numbers because the sum accumulated
when each number was read from an input record. When the standard deviation is calculated by the above formula
{(without rearrangement of terms), however, it is necessary to retain all the numbers in memoty, so a vector is
required.

The next example demonstrates a program that computes the vector sum s of two vectors u and v. For those
unfamiliar with vector summation the following definition should suffice

s=u+tvy,

for u =(3,5,2)

and v =1{427)
then s = (344, 542, 2+47)

={7,7.9)

Mathematically we say that the i component of s is formed as
S,~=U,-+v,- |S|S3

The program will read the three pairs of data from separate input records as shown

u v
3.0 4.0
5.0 2.0
2.0 7.0

into two vector arrays u and v, compute the vector sum in s and print out each component of s on a separate line.

program vector {input,output);
var u, v, s : array { 1.3] of real;

i : integer;
begin
{ first read in the data }
for i := I to 3 do readin { u [i].v [i]);

{ form vector sum }
fori:=lto3dos[il:=uli]+v[i]

-21-

{ write out results }

writeln (" vector s ');

for i :=| to 3 do writeln (s[i])
end.

In this example, it would have been possible to perform the vector addition operation without the use of
subscripted variables. Such an operation, however, is frequently a small part of a much larger program in which it
is necessary to store the data in subscripted variables for later use. Students who are not familiar with matrices
should move on to Section 13.

When arrays of higher order than the one-dimensional vector are needed, the array declaration informs the
compiler of the number of dimensions (i e. the number of subscripts and the total storage required for the array):

var a:array [1..5,1.6] of real;

This informs the compiler that a is a matrix (two-dimensional array) requiring 25 locations for storage.

var a, b, ¢ : armay [1..5,1..5] of real;

fori:= 1 to 5 do
forj:=1te5do clij:=alij + blij:

In this case, two matrices a and b are summed and the result is stored in a new matrix c.

13. PROCEDURES AND FUNCTIONS

In Section 9 were introduced the special mathematical functions supplied through the Pascal compiler. The users
are able to supply two types of routines of their own where necessary:

® function
& procedure

Need for these special routines arises:

{i) when the same mathematical function or procedure is required at many points in a program;

(i) in larger programs, where it pays to write and test sections of the code independently; and

(i} when more than one person is respensible for developing the code.
The function returns a single value as its result and is usually used to perform mathematical operations similar to
V' or other function evaluation. The user-supplied function is best demonstrated by an example. Suppose we
wish to evaluate a given cubic polynomial for various real values of x:

fix} =1 + 1.6x + 3.2 + 6x°

which, for speed of computation, is best written in the Horner form as-

fix) =1 + x(1.5 + x(3.2 + 6x))

When we have eventually constructed the code for this function it may be invoked through such Pascal statements
as

y = f(x)
y:=1f{x) + 6.0
y:=f{x-3.0) + 7.0

-922.

The following example demonstrates the use of a function and the main program code necessary to invoke it
so that the above function f(x) is evaluated for x=0.,1......10.

program evaluate__polynomial {output);

var x, y : real;
i : integer;

function f {z : real) : real;

begin function code
f:=1.0+z*{18 +2* (3.2 +6.0* z)
end;

{ main program }

baegin
x 1= 0.0;
while x <= 10.0 do
begin main program code
y:=f(x
writeln {y);
x:=x+10
end
end.

We notice, in the simple example, that the code for function f has been separated from and must precede the main
body of code.

Because the variables x,y and i were declared at the head of the program, they are available if required in all
portions of the program. These are known as global variables.

The variable z used to define function f is known as a local variable and may be invoked only through the
scope of the function. Any reference to it outside the function would not be permitted by the Pascal compiler.
The scope of a function is identified easily through the appropriate begin ... end delimiters within the function.

The function must be declared to be of real type to avoid truncation of the fractional portion of the result. The
function parameter z is a dummy but it must be of assignment compatible type to the actual parameter in the cal-
ling program (x). When the function is invoked through

y = f{x)

the value of x is transferred effectively to z for evaluation. The function operates on a copy of x in z and must

transfer the calculated result back by assigning it to f, the name of the function. In this case, the function cannot
alter the value of z.

Should you wish the function to alter the actual parameter, the dummy parameter must be declared to be
changeable. This is done by the alternative function declaration

function f (var z : real) : real;

The actual parameter and the function parameter must be of the same type in this form of function call. Consider

now a second example involving a function. Ignoring an appeal to mathematical analysis, suppose we create a
new mathematical function

o) =1+ 14+ L 4 1 4
X

X2 xﬂ

and that a sufficient number of terms are included so that —17— < 0.00001. The following program defines the
X

function g{x) and evaluates it for x = 2.0,2.1, ..., 3.0.

- 23 -

pregram evaluate__g (output);

var X, vy : real;
function g (z : real) : real;

var sum, term : real;

begin
sum := 0.0;
term : = 1.0;

repeat sum := sum + term;
term :=term / z
until abs(term) < 0,00001;

g = sum
end;

{ main program }

begin
x:=2.0;
while x <= 3.0 do
bagin
y =g (xk
writeln (X, y):
x:=x 1 0.1
and
end.

In this example, additionatl variables sum and term are introduced in the formulation of function gl(z). These vari-
ables are defined within the scope of g, hence are iocal to it and unavailable for use outside.

The procedure is the more powerful version of a sub-program and usually performs more involved operations
than those for which the function is designed. Typical tasks for which procedures are used would include finding
the roots of equations, multiplications or other operations on matrices, and solving sets of linear equations. Unlike
the function, the procedure is not restricted to returning one result as part of an arithmetic expression.

The following code shows the use of procedure quad to determine real roots of a quadratic equation ax? + bx
+ ¢ = 0. The coefficients of this equation are supplied as parameters for the procedure. The procedure is
responsible for returning the two roots and an indication that real roots are possible. it is assumed the coefficients
(a,b,c} are real numbers supplied on input data records (three numbers per record). The number of data records is
indeterminate, however, all coefficients are known to be less than 108 in absolute value. Consequently, the end of
the data is signalled by a record with the first coefficient outside this range.

program solver (input, output);

varcl, ¢2, ¢3, 1, 12 : real
ier : integer;

procedure quad (a, b, ¢ : real; var x1, x2 : real; var k : integer);
var discriminant : real;

begin

discriminant:=b*b-4.0*a* ¢

if discriminant > 0.0 then

begin
discriminant := sqrt {discriminant);
r1 := (-b + discriminant) / {2.0 * a);
r2 ;= {-b - discriminant) / {2.0 * a);
k:=0

end

else k:=1

end

- 24 -

{ main program }
begin
readin (¢1,c2,c3);

while abs{c1) < 1.0e8 do

begin
quad {¢1, ¢2, ¢3, r1, 12, ier);
if ier=0 then writeln(’ real roots are ",r1,r2)
else writeIn{’ no real roots’);
readln (c1, c2, ¢3})
end
end.

Like the previous functions the procedure quad is positioned after the initial declarations but before the body of
the main program. Unlike the function, which is used to return a single value as part of an arithmetic assignment,
the procedure guad is invoked by a single statement.

quad {c1, ¢2, c3, r1, 12, ier);

The main program passes three coefficients of the quadratic, whereas the procedure returns the roots in x1 and x2
and an indication {k=0 or 1) as to the sign of the discriminant. The three vaiues are retumed in r1, r2 and ier.
Because these variables are assigned values by the procedure it is necessary to indicate that the appropriate

dummy parameters may be assigned values by use of the var declaration.

14. CONSTANTS

Frequently, programmers wish to associate particular values with certain names and use these identifiers
throughout the program. These values are not to be altered within the program. A common requirement is to
associate an approximation for m with the identifier pi. This is done through a const statement, which precedes
the var declaration. In the following example, the areas of circles of radii 1.0,1.1,1.2.....2.0 cm are calculated:

program area (output);
const pi = 3.1415926;
var r, area : real;

begin
r:=1.0;
while r <= 2.0 do
begin
area := pi * r ** 2;
writeln {" area of circle with radius ",r,” cms is ',area);
r:=r+ 0.1

end
end.

The constant pi is not mentioned in the var declaration because it is not a variable: however, it has a type associ-
ated with it from its definition, here it is real. The declaration

const t = 3;

causes t to be of the integer type. Use of the const declaration provides some protection in the program which
might otherwise accidentally alter the value of a fundamental constant.

16. MORE ABOUT CONTROL OVER OUTPUT

The output statements treated so far are sufficient to enable most simple problems to be solved. The tidiness of
such output, however, frequently leaves much to be desired. This section is included for those who wish to know

-~ 25 -

more about control over output. Rather than state formal rules, the explanation is performed through examples.
For

X :=-1.36427815E+02
the statement
writeln {',x =,",x)
causes
x= -1.3642781499999998E+02

to be printed on the line printer. It will be noticed that the ,x,=," starts with the x in ¢olumn 1. The leading
blank in ‘,x,=," is stripped from the output and used to control line skipping on the printer. The blank causes a
single line to be skipped. The following symbols have special significance if they are used as the first character of
the output destined for the line printer:

b single space

0 double space

- triple space

1 new page

+ no advance of the paper {useful for over-printing)

The writeln procedure after writing the named variables or items causes a new output record to be created (/.e.
writeln adds to an existing output record but afterwards appends an end-of-line). The write procedure functions
similarly to writeln in that it also adds on to an existing record, but does not lead to the creation of a new record
when the items have been added. For example, the sequence

writeln (‘bA“'bBb'):
write {, CD');
writeln {", E');

would produce
A,Bg
CD,E
The default options for real variables allow 24 columns of output to display the number in floating point format,
whareas integer variables take 12 columns (leading blanks are inserted where necessary).
Further control may be obtained over field positions, as indicated by the following examples. Assume that x is

a real variable set to -1.36427815e+02 and i is an integer that has been assigned the value 5392:

printer control
printed record

writeln (x:11, 1:6) produces -1.364e+02,,5392
writeln (x:9:2) produces »136.43
writeln ('bx =brr X:Q:Z, 'b|=" |7) produces x=bbbb1 36'43bl=bbb5392

16. MORE ABOUT INPUT

On input, the procedure readin causes the data items associated with the input list to be read and transferred to
the appropriate variables. On completion of the transfer, the file is positioned at the start of the next input record
{a line for terminal-oriented input or a new card on punched card input). On the other hand, the procedure read
simply causes the next data items on the current record to be transferred without the input file being advanced to
the next record. For example with

readin {x,y};
read (z);

the first two numbers are transferred to the variables x and y and the input file is advanced to the beginning of the
next line. The subsequent read procedure extracts a third number from the next record and places it in z.

- 26 -

Pascal provides two special functions that are of assistance with input control:

(i} eof
(i} eocln

Each is a Boolean function (ie. it returns a value of TRUE or FALSE). eof {end of file} returns a value of FALSE
when data input records are still to be processed. It returns a TRUE value only after the last input record has been
reached. Any attempt to read additional data after the end of input file would cause the program to ‘crash’ (ter
minate with an error diagnostic printed) at that point of the execution phase. To prevent this, particularly when the
number of input data records is not known in advance, the eof function can be used. The following program reads
and lists & set of input records {of unspecified number) containing one real number per record and finds the mean
value of the set:

program mean {input, output;

var sum, x, mean : real;

number . integer;
begin
sum = 0.0;

number := 0;
while not ¢of do

begin
readin {x);
sum :=sum + x;
number := number + 1
and;

mean := sum / number;
writeln {" mean = ',mean)
end.

The block of statements to read and accumulate the sum of the numbers punched on a set of data records is
executed until the expression

not eof

is false. The not is a logical operator which negates the value of eof. When the last card has béen read, eof is
TRUE and is negated to FALSE by the not operator. Hence the block of code is avoided and the mean is calcu-
lated and printed.

The eoln (end of line) function works similarly, returning a value of TRUE when the last actual character of the
current input record has been read.

17. NON-NUMERIC DATA AND VARIABLES

Pascal provides very complex structures for handling non-numeric data. In fact, the language is so flexible that it
permits users to define individual data structures. This section is introductory, being concerned primarily with
numerical computation, so no attempt is made to present the bulk of this material. However it is necessary, even
with numerical computations, to perform a little character processing at times.

The permissible set of non-numeric characters depends upon which version of Pascal is used and the computer
hardware facilities available. For simplicity, we restrict consideration to the alphabetic letters, arithmetic numerals
and a few special symbols. In a Pascal program a particular value of type char {character] is enclosed within single
quotes

@, A B

It is important at this stage to distinguish the character ‘4’ from the integer 4. The character ‘4’ cannot be used in
arithmetic operations but the integer 4 can. To represent the single quote as a character, it is written twice "',

.27 -
Variables used to hold character information must be specifically defined

var x, y, z: char;

defines three variables x. y and z, each of which may hold one character of information. The following example

shows how all the items in a current input record are read and the number of times the symbol '+ ocours is
counted:

program character {input,output);
var x : char;
sum : integer;

bagin
sum = 0;

while not eoln do

begin
read (x);

if x ="'+ then sum :== sum + 1
end

writeln (" number of times -+ occurs in record is ',sum)
end.

It is only possible to store one character data item with each of the non-subscripted character variables intro-

duced above. To be more powerful, we need the ability to store longer items in a single entity. Pascal provides a
number of ways of doing this. The first is though the use of an array:

var name : array[1..20] of char.

enables up to twenty characters to be stored in the vector array called name. Individual characters may be selected
by the use of subscripts. For example, name[i] selects the /' character from the 20 character vector.

The following code reads in twenty character names from input records and immediately prints them out on
separate lines. The process continues until no more input records are available.

program list__names (input,output);

var name : array [1..20] of char;
i . integer;
begin
while not eof do
begin
fori:= 1 to 20 do read {name[i]};
write(" *);
fori:= 1 to 20 do write (nameli]);
writeln;
readin
end
end.

It is possible to transfer the information in tweo arrays directly provided that they are of the same length and type.
For example, in

-28 -
var card1, card2 : array [1..80] of char;
i : integer;
begin

for i := 1 to 80 do read (card1[i});
card2 := card1;

the 80 characters read into the array card1 are assigned directly to card2. This assignment is equivalent 10 writing

for i :=1 to 80 do card2{i] := card1{i]

In Pascal, character information stored in an array construct may be held in either packed or unpacked form.
The above examples show the use of the default form, the unpacked array. With packed arrays, considerable sav-
ings in storage space are possible, however, there may be a small price to pay because of the additional time used
in packing and unpacking the array in some Pascal implementations. To use a packed array in the above example,
the only change required is in the declaration statement, /.e.

var card1, card2 : packed array[1..80) of char;
The packed array provides one additional powerful feature in Pascal, namely the use of a string of characters.

‘John Smith’
is an example of a typical string. To use string variablas in Pascal it is necessary to go a step further and define a

ones own data type. This is done through a type statement which introduces the type and associates it with the
chosen name. This name is not used directly as a variable, but rather to define variables. For example, in

type name = packed array [1..10] of char;
var namel, name2 : name;

a ten character string type is associated with name and two variables namel and name2 are declared to be of this
type. Assignments of the form

namel := ‘John Smith";
name2 ;= name1l

may be made. Individual elements of the string may be extracted with references such as namel[i]; this permits
access to the /' element of the string. A complete string may be written out in Pascal:

writeln ('name is’, name1)
would display
name is John Smith
Note that the output capability applies to string variables only. Unfartunately it is not possible to read string vari-
ables in this fashion in standard Pascal; they must be processed character by character, as in
fori:=1 to 10 do read (name1[i])
Pascal 8000, however, permits string variables to be read directly.

18. CASE STATEMENT

When a two-way decision based on the value of a logical expression is required, the if-then-else construct is ideal.
When the choice involves more options, the case statement can be of considerable value. A typical case structure
is shown in figure 9.

- 29 -

£, 8 53 Sa

l

Figure 9 case - statement structure

In this case, there are five paths to be chosen depending upon the value of e. For the first four choices
sequences of statements s;, §,, 55 or s4, are seiected. The f{ifth choice, however, is to do nothing at all. The
general form of the case statement is

case a of

1150
Y
P
-

a b wN

end

where we notice the ; associated with case label b denotes a null statement. The order in which the differant case

labels appear is unimportant, however, & must return a defined value appropriate to the case statement labels
unless an otherwise clause is provided as a suitable escape mechanism.

{The atherwise option is available in
Pascal 8000 and not in standard Pascal.}

If i and j are assumed to be integer variables, a typical example could be

case i+2*j of

1m xi=x+10;
2; x = sin{x);
10: begin
X 1= cos(x);
y 1= sin{x}

otherwise
begin
x:= 0.0;
y: = 1.0
end
end

For the structures considered here, the case selector (i+2%j) must be of the integer type. The expression is
evaluated and its value determines the subsequent course of action defined by the case-statement-iabels. For a
value of 1, 2 or 10 respectively, the first three statements are chosen. Any other value directs execution to the

-30-

otherwise. It is not necessary to include an otherwise clause if the programmer does not require a “catch-all’.
Failure of the value of the case selector to correspond to a case-statement-label {in the absence of the otherwise,
however, leads to an error at the execution phase of the program,

19, A COMPLETE PROGRAMMING EXAMPLE

The following example demonstrates the stages of development involved in determining an approximation to 7
using a computer to simulate a dart board. (The approach is itlustrative only - it is not the way to determine w.) If
we have a circular dart board mounted on a square background, as shown in Figure 10, then it would be possible
to determine experimentally an approximation for . When a dart is thrown randomly to land in the square, it may
land within the circle or outside it. The probability of it landing within a certain gsection is proportional to the area
of that section:

Figure 10 Dart board

Relative proportion of darts landing in the circle

area of circle

area of square
2

Tr
(2r)?

m

4

m = 4 X relative proportion of darts landing in the circle.

Consequently, by randomly throwing darts and measuring the relative frequency of those falling within the
circle, T can be determined approximately. Instead of throwing darts, 2 computer can be employed to do this by
direct simulation. The process can be simplified, as showr in Figure 11, by taking a quadrant of a circle of unit
radius. By selecting two random numbers, using our random number generator, we may let these two numbers
(say x and y) represent the coordinates of the point where the dart lands. This point may be within the circle or
outside it. If we measure the distance d of the point from the origin

Y

r=1

X X

——=] -

Figure 11 Quadrant simplification of dart board

d = \/x2+y2

we can determine if it lies in the circle or not depending upon whetherd <1 ard > 1 {or, equivalently, whather
d? <1 0rd? > 1, to save the square root operation),

A flow chart to describe the steps involved is shown in Figure 12 for a sample of 1000 darts.

-31.

Start

Set N = the
number of darts to
be thrown

Set number of
darts in circle =0

i

Set number of darts
thrown so far = 0

X = random number

|

y = random number

calculate square distance
from origin @2 = x2+y?

NO

YES

increase number of darts
landing in circle by one

L
l

increase number of darts
thrown so far by one

is
number of darts thrown
so far << N

YES

datermine m =
v No. in circle

N

Stop

Figure 12 Flow chart for 7 problem

it remains only to generate random numbers to simulate the throw of a dart. The process of random number

generation is not as trivial as it may at first appear. For the purpose of this exercise we shall develop our own

random number function rand. A random integer number can be generated from another random integer by the
operation

. e g * s
rand rand feonst

-32-

where /,,,, initially is 1764435781 and /_,,, is 1220703125. The reason for selecting these numbers in particular,
however, is beyond the scope of this presentation. The integer multiplications produce a result greater than the
largest integer that the computer can offer. Some of the result is lost in the multiplication, a phenomenon called
‘fixed point overflow’ in computer jargon. Because we require a random number in the range O < random number
< 1 the integer remaining after the overflow is scaled to that range by

l‘! It
rand = ——2% ____* 9999999999999999
largest integer

To set the initial value of /,,, = 1764435781 in the random number function rand it is necessary to invoke a

separate procedure rand__initialise. This procedure also sets up i, and the scaling factor necessary to convert
the random integer to the appropriate range.

program pi {output);

var i__rand, i__const :integer;

no__thrown, no_in__circle : integer;

no__to__be__thrown 1 integer;
rand__biginv : real;
X, v, dsq, pi : real;

{ first define random number procedures }

procedure rand___initiaiise;

const
igen = 1220703125;
istart = 1764435781;
maxint = 2147483647;

{ the value of maxint is determined by the maximum
absolute integer value representable on your
computer. For the IBM360/370 series maxint = 2**31-1
while on a 36 bit machine you would use maxint = 34359738367 }

begin
rand__biginv := 0.99999999999999299/maxint;
i_rand := istart;

i__const := igen
end;

function rand : real;

{ rand generates a random number in the range (0,1).
This version won’t run on a pascal system that traps
fixed point overflow. }

begin
i__rand := abs {i__rand * i__const);
rand := i_rand * rand__biginv
end;

-33 -
bagin

{ maih program
determination of pi by dart board simulation }

{ initialise random number generator }
rand-initialise;
{ now perform dart board simulation }

no__to__be_ thrown := 1000;
no__in_ circle := 0;

for no-thrown := 1 to no__to__be___thrown do

begin
X 1= rand;
y = rand;

dsg:=x*x+y*y

if dsg < 1.0 then no_in__circle := no__in__circle + 1

end;
pi:=4.0 * no_in__circle / no__to__be__thrown;
writeln (" pi =, pi}

end.

20. ERRORS IN PROGRAMMING

The Pascal compiler will inform us in no uncertain terms of any syntactical errors we make in coding a program.
Such errors are easy to detect and correct. The computer is a totally obedient servant; provided that we ask it to
perform a task in the language it understands, it will obey us without question. Therefore, the hardest errors to
identify are the ones we make in specifying the logic or steps involved in solving our problem. In reverse to
British justice, all programs should be considered guilty (of containing bugs) until proved innocent {"debugged’).

Too often the poor computer is blamed for an error in the program that should have been found and removed
by the programmer when debugging the code.

garbage in implies garbage out

This adage is certainly true but the programmer and, in particular, the scientific programmer may find it difficult to
recognise the output of a program for what it is. It is advisable to test programs thoroughly before placing any
confidence in their output. Too often this step is overlocked and the output of the program may be misleading to
say the least. Verification of the correctness of the pregram is not a simple task. Testing is often commenced by
comparing the computer solution with a known mathematical or physical solution. When agreement is satisfactory,
we may then proceed to use our program for all the cases in which we are interested.

There are three ways in which the problems of the scientific programmer are different to those of the more
commercially oriented programmer. As most commercial tasks are well defined, errors in the computer output are
due directly to the program or incorrect data on which it operated. The scientific problem solver is solving a
mathematical model of some real physical system. When this model was developed, many assumptions {and
probably simplifications} were made. Just how valid were these and are they the source of errors? Were the

errors caused by the type of numerical technique chosen to solve the model? Or were the errors due to the coding
of these techniques?

- 34 -

21. INTERACTIVE MODE OF RUNNING

A Pascal program can be made to run in interactive mode so that data can be read from and/or written to the
terminal (for example. under the IBM TSO operating mode). This provides the user with some dynamic control over
the program. The way in which interactive communication is established is not defined in the Pascal standard and
implementations vary between compilers, In Pascal 8000 the following approach is adopted.

Firstly the user must specify that either or both input and output are coming or going to the terminal in an
interactive fashion, This is done by inserting a solidus {/} where appropriate in the program declaration, e.g.

program xyz {input/,output/);

indicates that both input and output are terminal oriented. This rule seems logical enough. The sequence of
events actually necessary to read input data, however, will make little sense without a more detailed study of
Pascal. Instead, the technique is best demonstrated by an example. Suppose we wish to read three coefficients of
the guadratic polynomial ax% + bx + ¢ from the same input line and, before we enter the data, wish to be
prompted by a special message at the terminal. The foilowing code would suffice:

writeln {* enter three coefficients a, b and ¢ *);
readin;
read (a, b, c);

On the other hand, if we wished to enter the three coefficients on separate lines (with appropriate prompting
messages) the following code would suffice:

writeln (" you are now to enter 3 polynomial cofficients °);
writeln {* a :=");

readln;

read {a);

writeln (" b :=);

readln;

read (b);

writeln {' ¢ :=);

readln;

read (c);

The readin statement must precede every read statement for interactive input in Pascal 8000. Other Pascal
systems will have their own peculiarities for handling interactive input.

22. PRACTICE EXAMPLES

Here are & series of questions to test your understanding of the material presented. The answers to the questions
are given in Appendix A, but don't be too hasty to seek these out until you have had a go yourself!

Qi

In the list below, some of the items are arithmetic constants, some are variables while others have no such
status in Pascal.

(a) Which are variables and which are arithmetic constants?
{b) Are any invalid (if so, why?)
{e) If the item is an arithmetic constant, what is its mode {integer or real)?

List (1) 1. (2) ABC (3) South__America (4] 14 (5) .6 (6} five (7) 2ue (8) 0 (9) bos {10} a*b
(11)5,132.6 (12} Ire-land {13) water__2__drink {14) -0.001E-10 (15) coca__cola

-35-
Q2

Write each of the following algebraic formulae as a Pascal statement to calculate y. Use any convenient names.

for the variables, which will be assumed to be of the appropriate type and to have been assigned vaiues by
previous steps of the program.

I 1; (b+e)
Vb2—4ac

2a
3y yv—=x = a—ny (m=3.1415928)

2y v =

az

What values would be stored in the variable on the left of the following arithmetic statements? Are any of the
statement invalid?

const a = 3.8;

varu : reak

k, i :integer;
{n = a
(2} = round(a);
{(3) = trunc(a);
(4) =al/f2,;

{6) k:=truncla + 2.9);
(7) = (k- 1) div2;
8 a:=a/20;

1
|
i
u
(5) u:=a/20;
k
[

o4

Write the necessary statements of portion of a program to calculate the variables given by the following
expressions. Use any convenient names for the variables. You may assume that variables on the right have been
assigned values by previous steps of the program and that the values do not require special consideration in
calculating the expressions. There is no unique answer to each question, so even if your answer differs from that

given it doesn't necessarily mean you are incorrect Some of the answers given use temporary variables to avoid
repeating the same calculation in each expression.

(1) s = vx2+y2+22
2y y = e*

(ex__e —X)
{3) u = -

M= MI—-

{e*+e ™)

{the mathematical function tanh x)

(4) v = tanx
1
1+ad
6 vy = (e +e U3

(5) ¢ = In

a5

What, if anything, is incorrect in the following section of Pascal code? Assume that the declarations and other
statements that would normally precede each is appropriate.

(1} writeln {" result is ",a);

{2)
{3)
(4
(5)

(6)

{7)

(8)

(9)

x:=a + b* sqri{d);
fori:=1tondox:=x+ 1,
fori:=1.0t0 10.6 do x := x + 1.0;

fori =1 to 5 do anything;

while i < 100 do

begin
x:=x+1.0;
=i+

end;

x = 0.0;
i:=20;
repeat
x:=x + i
ir=j-2
until i <1

x:=0.0;
i:= 20.0;
repeat
x:=xti
i:=i-20
until i < 1.0

while i < 100 do

begin
x:=x+1.0
writeln {x}

end

{10} if x >= y then writeln {x);

else begin
x:=x+1.0;
writeln (x)
end;

1) x:==xifa<b

(12} var x: real;

i : integer;
begin

X:=i

{13) wvar x: real;

i : integer;
begin

- 36 -

-37.

(14) var x: real +
i :integer;
begin

i = trunc(x};
(16) ifa=b=c thenx:=a + b + ¢;
{16) wvart, x: amay [0..100] of real;
(17} wvar tt, xx : array [0..100,0...100] of integer;

{18) program calculate {output);
var x, i: real;

function cost (z : real) : real;

begin
cost:=20*z+6.0
end;

{ main program }
begin
i:=1.0;
while i << 10.0 do
bagin
x 1= cost{i);
writeln (i,x};
i:=i+1.0
end

end,

{19) program calculate {output);
var x : real;
i 1 integer;

function cost [z : real) : real;

begin
result := 2.0 * z + 6.0
end;

{ main program }
begin
ir=1
while i < 10 do
begin
X 1= cost (i}
writeln {i,x);
=i+

end

end.
(20) it x <Qory<Qthens:=x+ty

{21) while x < 0.0 do x:=x * x;

-38 -
{22) whila x < 0 than
{23) program vector {(input, output};
var x : array [1..10] of real;
i ! integer;
begin

{ reads input from 10 separate input records }

for i := 1 to 10 do readin {x[i})

fori:=ito 10 do x[i} := x[i] + x [i+1];
for i := 1 to 10 do writeln {x[i]}
end.

Q6

Write a Pascal program to calculate and print the perimeters of a set of circles whose radii are 1., 1.5, 2., 2.5,
... 10. cm, respectively
(m = 3.1415926).

Q7

Write a Pascal program to sum the first 20 terms of the integer series

1+4+7+10+..

as
Write a Pascal program to sum the first 20 terms of the integer series
1+2+4+74+11 +16+ ...

Q9
Write a Pascal program to sum the first 20 terms of the integer series

1+3+7+13+21 + ..

Qro

(For advanced students only.)

A mathematical quantity S defined by the infinite series

2 3 4
§=1—x+X-_ x4, x
2! 3! 4]
needs to be computed and tabulated for x = 0, .1, .2, .3, ..., 1. Whrite a Pascal program to do this using sufficient

terms so that §,4, — §, < 0.00001. {Remembern! =1 X 2 X3 X .. X n}

The next three questions demonstrate how a simple mathematical idea may be built up into a general purpose
subprogram that others may use without them ever having any idea of the underlying mathematical technique. The
aim is to find the area under a mathematically defined curve. You will prabably find the first example (Q77) easy to
code, however, the other two may appear beyond you. Should this be the case, be content at this stage just to
work through the given answers and see that they make sense. The building of a final programming package {such
as Q73) is no trivial matter, it is something that only comes with experience. It is included to indicate where you
should be heading as you develop general purpose programs.

arr

If you are asked to evaluate fd e "dx [Le. find the area under the curve) then you could with a knowledge of

-39.

high school mathematics, quickly give the correct answer (I hope). At times we can be given very]difficult
functions to integrate and the only recourse is to a numerical approximation. One way of approximating f e “dx

numerically is to sum the area of the histogram sections approximating e * in Figure 12. This is done easily, but
we must take particular care when treating the segments at x=0 and x=1. With the approximation shown above,
we write

1 20 9 . g
f e dx ~ 1E—+ e+ .
0 2 i= 2

1
{i) Write a Pascal program to evalue ,g e "dx with the above discrete approximation.

{ii) How good is your answer? Do you notice any improvement if you run your program a second time with
double the number of subdivisions?

e —— v e —— —— — —— E— — - S—

] 1] | | |
0 01 0.2 0.3 0.8 0.9 1.0

1
Figure 12 A numerical approximation tof é—xdx
0

Qrz

Let us generalise a little on the previous question. Mathematicians would write the above technique of
integration {known as the histogram method} for a general function f(x) as

n—1
j: fix)dx = h [—f% + ’_E‘; £{x;) +% 1.

b—, . . .
where h = 2 , and nt1 is the number of points x; at which the function f{x;} is evaluated.

Should you wish to integrate an arbitrary function, say,
kid
[sin2x dx,
o

then the code written in the previous question could be changed, howaver, there are a number of places where the
function being integrate must be altered. This leaves plenty of scope for error. A better method is to wrte a more
genera! program where the function f(x) to be integrated is specified only once. To do this in Pascal f{x) is defined
through a function definition. Write a more general integration program to invoke the supplied function, where the
limits of integration a, b and the level of grid refinement are specified in the main program. Test your program by
coding the function f(x) = sin2x and integrating between O and 7 with n=8. (Before you attempt this example you
may care to reread Section 13.) :

- 40 -

Q13

The previous exercises have not really considered the all important mathematical question of how good an
approximation to the actual integral is our numerical procedure? In the limit as h=0 we know the two are
identical, however, the practical question is how small need h become before the result is accurate enough. One
approach commonly adopted in numerical computing is: let S,+1 denote the summation approximation to the
integral with (n+1} grid points. If we start with n=2, the grid may be refined as we recompute §,,, for
n=4,8,16....; effectively halving the mesh each time. We can continue halving the grid until the sequence S, 4
converges. A frequently used tast is

Sont1 — Suthi <e

SZn +1

This time try to generalise the program even further so that you have created a general purpose integration
procedure that others could use. All the user of the package should have to do is

{i) write a function f{x) to specify the function being integrated; and
(i} write a main program where the limits of integration a, b and a required accuracy factor € are specified.

The main program can then invoke your integration procedure by a call such as
integrate (a,b, accuracy__required, intgr, err)

where a, b and accuracy__required are real variables previously defined. The integral result is returned in the real
variable intgrl, but err provides a safety valve should something go wrong. If the integral has been approximated
successfully err returns an integer result of O, otherwise 1. The integrate procedure should continue to refine the
mesh for n =< 1024 if convergence is not obtained earlier. If convergence is not achieved err should be set to 1.
Test your package on

m
f sin2 x dx
o

The following code is a possible section of the main program to invoke the package:

begin
a:=0.0;
b := 3.14159286;
accuracy__required ;= 0.001.
integrate{a, b, accuracy. _required, intgrl, err);

if err=0 then writeln |’ inteéral "intgrl)
else writeln (" integral not found)
end

Qr4
(For advanced students only.)

The techniques of numerical integration outlined in Q& are fairly basic and obvious. What is perhaps not so
obvious is that such ‘crude’ techniques can at times be highly effective. They are particularly valuabie for
integrating data that has already been discretised {e.g. economic data where szles statistics may have been
averaged over certain time periods). When this is done, the use of more complex techniques would be
meaningless anyhowl!

An integration scheme for continuous functions that is more advanced than the histogram method of Q5 is
Simpson's rule. You may have encountered this in a mathematics course. Simpson’s rule approximates the
integral of a function f{x} by

b
[fixjax = —g-{fo +arf, +2f, +4f; +2F, +..F af, ., + 1]

where h = 272 and £, = f(a + ih) for i = 0.1,...n .

it is obvious that n must be an even number for Simpson's rule to be applied. (This is equivalent to saying
there must be an odd number of grid points.) Try to generalise the package from the previous question so that n

-41 -

takes the values 4,8,16,...; and then test it on the previous integral.

As an exercise in mathematics, try to calculate the following integrals with Simpson's rule, restricting n to 4 in-
each case.

2

(7) f1 (5x* + 4x? + 6x2 + 4x + 1)dx
1

(1) [(@ +3x" +2x + 4o

Compare your numerical results with the analytic integral for each case. What comment could you make
concerning the accuracy of this method of integration?

We now change our orientation in problem solving away from integration and consider the use of a computer in
simulation studies for the next five exercises. These will require the use of a randoem number generator. You may
assume that one exists, as was indicated in Section @ {rand or rnd}. Should one not be available on your
computer, you could include the code shown in the determination of the 7 example in Section 19.

Qs

Write a Pascal statement that will generate a random real number in the range
o0<y<10

areé

Write a Pascal statement that will generate a random real number in the range
01 <y<086.

Qrz

Write a Pascal statement that will generate a random integer from the set
1,2, 3 ...15
Qre

Bill Smith travels to work five days each week by bus. Bill is an extremely methodical person whao arrives at
the bus stop at precisely 8.00 a.m. The government bus service is also extremely punctual and its vehicles call at
Bill's stop at 8.01, 8.06 and 8.11 a.m. Each of these is capable of getting Bill to work on time. His employer,
although somewhat flexible and tolerant, will dismiss him should he arrive at work late more than once a month
{one month = four working weeks) averaged over the period of employment. Can Bill reasonably expect to retain
his job in the long term if the number of passengers sach bus can pick up at his stop varies randomly between O
and 15 inclusive, and if he could find any random number of people up to 10 in front of him in the queue? Ignore
any appeal to probability theory and write a Pascal program using a random number generator to simulate the bus
stop situation and help estimate Bill's employment security with his present firm. Run the daily simulation for
1000 such maornings and print out the number of days per month Bill is late. Before you write any Pascal code,
you might like to draw a flow chart to make sure you clearly understand the steps involved.

The question arises with all simulation exercises — have we studied sufficient cases to obtain a useful
result? The answer requires a careful use of statistical techniques that are beyond high school mathematics
and will not be discussed further.

Q73 (A more involved simulation exarcise for advanced students.)

Assume that the Sydney Harbour Bridge authorities wish to reduce the average time a motorist spends
waiting to get through the toll gate section of the bridge during peak hours. At present, there are 11 toll col-
lecting stations - seven automatic and four manual. Can the traffic situation be improved by exchanging an
automatic station for a manual station of vice versa? The authorities are unable to alter the number of sta-
tions by more than one either way for various reasons that do not concern you here. Your task is to help the
authorities make the correct decision. They have studied traffic flow across the bridge for some time and
have come up with the statistics given below. You have been engaged as a programmer to enable the
authorities to try out the various configurations and to estimate the average time that each car spends waiting
to get through the toll area.

m
(2)
{3)
()
15)

(6}

(7)

8)
(9)

(10)
(n
(12)

{13)

- 42 -

The correct toll for all vehicles is 20¢ per vehicie.

There are seven automatic and four manual stations.

Every five seconds either seven, eight or nine cars enter the toll area.
On average, 6.4 out of every 10 cars will select the automatic station.

Of the drivers selecting an automatic station, eight out of ten will choose the station with the
shortest queue. The other drivers will select a queue at random.

Of the drivers selecting the manual station, seven out of ten will choose the station with with the
shortest queue. The other drivers will select a queue at random.

It takes five seconds to process the correct money at an automatic station, provided the coins are
not dropped.

If the coins are dropped at an automatic station, it takes 20 seconds to retrieve them.
At a manual station the fotlowing times are involved, provided the toll money is not dropped:

20¢ 5 seconds

$1 10 seconds

$2 15 seconds
= $6 20 seconds

If the money is dropped at a manual station, it takes five seconds to retrieve.
One out of every hundred motorists will drop the money.

One out of every hundred motorists will stall the vehicie at an automatic station and take 10
seconds to re-start

Two out of every hundred motorists will stall at a manual station and take ten seconds to re-start.

Write a Pascal program to simulate the above bridge situation for a one-hour time span. Assume no motor
ists are at the toll gates when the hour commences. Determine the average time a motorist spends waiting,
and the average length of the queue. Also determine the length of the longest queue that forms. Given the
constraints mentioned previously what is the best action open to the authories?

Q20

Write a program that will

(1)

(2)
(3)

(4}

{5)

(6)

Q27

accept the four coefficients of a cubic polynomial

fix} =a + bx + ex? + ax®;
accept an estimate x, of one root of the equation f{x) = 0:
improve the estimate of the root by the Newton-Raphson method, i.e.

f(xnj .

e x =%, — ;
nH n f r(xn)
the process can be considered to have converged if

Ko+ —

Xn

X
2__<0001 ;

print out the improved estimate of the root; and

allow only nine iterations. If convergence has not been achieved, print a message warning of
this.

Write a program that will read in a set of ten real numbers from one input record and then print them out
in the reverse order. (Note — you need to use subscripted variables to do this effectively.}

-43 .

Q22 (For advanced students anly)
Read in a set of ten real numbers from one input record and write a program that will sort these into des-
cending order.
23. REFERENCES
Cox, G., Tobias, J. and Perkins, H. {1980] - Pascal 8000 Reference Manual Version 2.0. AAEC/M

Welsh, J. and Elder, J.E. [1979] - Introduction to Pascal. Prentice Hall, New Jersey.

-44 -

- 45 -

APPENDIX A
ANSWERS TO SELECTED QUESTIONS

(1) invalid (should be 1.0) {2) variable

(3) wvariable (4} integer number

() invalid {should be 0.6) (6) wvariable

{7} invalid (first must be alphabetic) (8} integer number

(9) variable (10} invalid {expression)
(11} invalid {comma not allowed) (12) invalid {expression}
{13) wvariable {(14) real number

(15) wvariable

1) y:=05"(b+ ¢
(2) y:=sqrtib*b-40%a*¢c)/(2.0* a)
{3) y:={(x + a) / 4.1415926
(1) invalid statement {cannot assign a real to an integer)
(2) i=4
(3} i=3
(4) invalid (should be 2.0)
(5} u=1.9
(6) k=86
(7) i=2
(8) invalid (attempt to alter a constant)
{1} s =sqri{x*x+ty*y+z*3
(2) Y := exp{x)
(3) w1 := exp(x);
w2 :=1.0/ wil;
u:r={wl - w2) / {wl + w2)
(4) v = tan(x)
(5} ¢c:=-In{abs{1.0 +a* a * a))
{8) wl:=a*x

y := (exp{w1) + exp(-sqrt{w1))} * 0.33333333333333333

(1) corract

{2) correct

{3) 1. should be 1.0

{4) limits for a for loop must be integer

(5) (remember anything is invoking a procedure, as yet undefined}

(6) correct

(N correct

(8} correct

(9 probable error in logic; there is no escape from the while block because i is never incre-
mented

(10) incorrect ; is not permitted before else

as.

Q7.

Qs.

(11}
(12)
(13)
(14)
(15)
{16)
{(17)
(18)
(19)

(20)
(21)
(22)
(23)

- 46 -

incorrect (should be ifa < b then x = -y

correct

a real value may not be assigned to an integer variable
carrect

logical expression should be (a =b) and (b = ¢}
correct

incorrect 0...100 should be 0..100

correct

the result of a function evaluation must be returned through the appropriate function name
{cost)

Shouid be if(x < Ojor{y<OQ)thens:=x t+vy
correct

should be while ... do ..

Pascal syntax will be passed by the compiler, but an execution error will occur on the sacond
for statement when x[11] is referenced.

program perimeter {output);
const pi = 3.1415926;
var r, perimeter : real;
begin
r:=1.0;
while r <= 10.0 do
begin
perimeter:= 2.0 *pi * r;
writeln [* perimeter of circle * r’ cm is ', perimeter);
r:=r+056
end

end.

program sum (output);
var sum, j, item : integer;

bagin
sum :=Q;
item :=1;
forj:=1 to 20 do
begin

sum := sum + item;
item := jtern + 3
end;
writeln (" sum ‘,sum}
end.

. program sum [output);

var sum, j, item : integer;
begin

Qs.

aro.

sum :=0;
item ;= 1;
forj:=1 to 20 do
baegin
sum := sum + item;
item 1= item + j
end;
writeln {* sum ",sum)
end.

program sum [output);
var sum, j, item : integer;

beagin
sum :=0;
item :=1%;
forj:=1 to 20 do
begin

sum ;= sum *+ item;
item := item + 2 *
end;
writeln {" sum ",sum)
end.

program calculate__s {output);
var x, sum, denom, num, term : real;

i . integer;
begin
x:=0.0;
while x <=1.0 do
begin
sum := 1.0;
i:=1;
num := -x;

denom := 1.0;
term := num / denom;

while abs(term) > 0.00001 do
begin

sum : = sum + term:
num = num * (-x);
ir=i4+1;

denom := denom * i;
term := num / denom
end;
writeln (x,sumj;
x:=x + 0.1
end

end.

-47 -

-48 -

Q7.
program integral {output);
var sum : real;
i . integer;
begin
sum = Q.5;
for i ;=1 to 9 do sum := sum + exp{ -i * 0.1};
sum := 0.1 * (sum + exp{ -1.0)/2.0);
writeln {* integral = ',sum)

end.

Qi2.

program integral {output};

var sum, a, b, h, x : real;

i, n : integer;
function f{ z : real) : real;
begin

f:=sin[2.0 * 2)
end;
begin
a:=0.0;
b := 3.1415926;
n:=g;
h:={b-a)/m
sum := f{a) / 2.0;
X:1= a
fori:=1 to n-1 do
begin
x:=x+h;
sum = sum + f (x)
end;
sum := h * (sum + f (b)/2.0);
writeln{" integral = ',sum)
end.
Qr3.

program integral {output);
var intgrl, a, b, accuracy__required : real;
err . integer;

function f { z : real)} : real;

bagin
- f:=sin20*z

end;

procedure integrate(a, b, accuracy : real;

var result ; real;
err :integer);

- 49 -
var h, x, sum, sume!d : real;
n, i ' integern,

begin
n:=2;
err:=1;

while { n <= 1024) and (err <> 0} do

bagin

h:={(b-a/m
sum :=f {a) / 2.0;
X:i= &
fori:=1 to n-1 do
begin

x:=x+n

sum = sum + f (x)
end;

sum := h * {sum + f (b) / 2.0);

if n >= 4 then
if abs({{sum - sumold) / sum} < accuracy then
begin
err:=0;
result := sum
end;
sumold : = sum;
n:=n%*2
end

end;

{ Main program to define data and invoke the integration package }

begin
a:=0.0;
b := 3.1415926;
accuracy__required := 0.001;

integrate(a, b, accuracy__required, intgr, err);

if err=0 then writeln { integral *,intgrl)
eise writeln (" integral not found ')

end.

Qr4.
program integral{output);
var intgrl, a, b, accuracy__required : real;
arr T integer;

function f { z : real) : reai;
begin

f:=sin{2.0 * z)
end;

procedure integrate{a, b, accuracy : real; var result : real;
var err : integer);

var h, x, sum, result__old : real;
n, i : integer;

- B0 .

begin
n:=4;
err:=1;
while { n <= 1024) and (err <> Q) do
bagin
h:=fb-a)/nm
resuit := f (a}) + f (b);
sum : = 0.0;
i:=1;
rapeat
sum := sum + f{a + i*h);
ir=i+2
untili > n-1;
result := result + 4.0 * sum;
sum = 0.0;
ii=2;
rapeat
sum :=sum +f{a +i* h)
i=i+2
until i > n - 2;

result := (h / 3.0) * (result + 2.0 * sum);

if n >=8 then
if abs {(result - result__old) / result) < accuracy
then err:=(Q;

result__old := result;
n:=n*2
ond
end;

{ Main program to define data and invoke the integration package }

bagin
a:=0.0;
b := 3.1415926:
accuracy__required := 0.001;

integrate {a, b, accuracy__required, intgrl, err);
if err=0 then writeln {* integral ‘,intgrl)

else writeln {" integral not found 7}
and.

Qrb.

y:=10.0 * rand
Q1e6.

y:=0.5 * rand + 0.1
Q7.

i == trunc (rand * 15.0) + 1

where i is declared integer
ori:=round (rand * 14.0) + 1

initialise
days late to zero

initialise
numbers of days to 1

number of days
<1000

- 51 -

initialise
bus number to 1

generate
queuse position

queue position > 0

and
bus number =< 3

YES

queus position

generate bus
capacity

Decrease queue
position by
bus capacity

increase bus
number by 1

]

YES

<0

NO

increase
days late
by 1

increase
number of days
by 1

Q78. Figure Flow Chart

result =
days late/50

YES
NO
write result write result
and bil} and bill
fired employed

1

l finish I

- B2 -

Q18
program bus {output);
var no__of__days, no__days late, no__queus, bus__no,
no._.on__bus, bus__capacity : integer;
fraction__late : real;
begin
no__days late := O;
for_no__of__days := 1 to 1000 do
begin
bus__no :=1;
no__queue := truncirnd * 11 + 1);
while (no-queue > 0) and (bus__no <= 3) do
begin
bus__capacity := trunc (md * 16);
no__queue := no__queue - bus__capacity;
bus__no:=bus__no + 1
and;
if no__queue > O then no__days__late := no__days__late + 1
end;
fraction__late := no__days__late / 50.0;
if fraction__late < 1.0 then writeln (" bill employed)
else writeln (* bill fired)
end,
are.
" Mo solution is provided to this question
Q20.

program cubic (input, output);
var a, b, ¢, d, xn, xnp1 : real;
i . integer;

begin
{ program to find roots of a cubic
coefficients of cubic read from input records }

readin (a, b, c, d);
{ read estimate from input record }

readln (xnp1);

i=1;

repeat
xn = xnpl:

cxnpl :=xn-{a+xn*(b+xn*(c+d*xn}))/(b+xn*(20* ¢c+xn*3.0*d)
i=i+1;

until {(abs{(xnp! - xn) / xn) < 0.001)

Qz21.

Q22

or {i > 9);

if abs ({xnpl - xn} / xn } < 0.001
then writeln {" root is ',xnpl)
else writeln (' no roots possible)

end.

program reverse (input, output);

var x : array [1..10] of real;

i :integer;
begin
fori:=1 to 10 do read (x[i]};
fori:== 10 downto 1 do write (x[i])

end.

program sort{input,output);

var temp : real;
i j integer;
x i array [1..10] of real;

begin

fori:=1 to 10 do read (x[i]);
fori:= 1 to 9 do
begin

forj:=i+1 to10 do
if x [j] =>x [i] then

begin
temp = x [j] ;
x[jl .= x {i} ;
x [i] := temp
end;
end;

fori:= 1 to 10 do write (x [i] }

end.

-53 -

-54 .

APPENDIX B
USE OF NON-PASCAL SPECIAL FUNCTIONS AND PROCEDURES

Special functions and procedures written in some languages other than Pascal may be invoked from a
Pascal program. This allows us to take advantage of the large number of mathematical routines written in
FORTRAN. The desired function or procedure must exist in an appropriate library. H we wish to invoke the
normal random number generator on the Lucas Heights computing facility the following identification must be
inserted in the Pascal code after the var declaration

function rand: real; fortran;

