AAEC/E409 |

AAEC/E409

AUSTRALIAN ATOMIC ENERGY COMMISSION
RESEARCH ESTABLISHMENT

LUCAS HEIGHTS

TERMINAL FACILITIES PROVIDED BY THE DATERCOM SYSTEM

P.I.. SANGER

April 1977

ISBN 0 642 99771 3

AUSTRALIAN ATOMIC ENERGY COMMISS!ION
RESEARCH ESTABLISHMENT
LUCAS HEIGHTS

JERMINAL FACILITIES PROVIDED BY
THE DATERCOM SYSTEM

by
P.L. SANGER
ABSTRACT

The computer network at the Australlian Atomic Energy Commission Research
Establishment is currently based on an IBM360 model 65 central computer,
a DEC PDPIL computer linked to the IBM360 computer via a selector channel,
and nine minicomputer systems |inked to the PDP9L computer via the AAEC
Dataway. The Dataway Terminal Communication System, DATERCOM, developed
for DGC NOVA computers makes use of the computer network facliitles to allow
ferminals to have access elther to the multli-user conversational interpreter
ACL-NOVA or to the resources of the IBM360 central computer system. The
features of DATERCOM in terms of the facitities made avallable to +he terminal
usar are described herea; they greatly expand the computing power that can
be made avallable to AAEC scientists,

National Library of Australia card number and !SBN 0 642 99771 3

The followlng descriptors have been selected from the INIS Thesaurus
to describe the subject content of this report for information retrieval
purposes. For further details please refer to IAEA-INIS-12(INIS: Manual
for Indexing) and IAEA-INIS-13(INIS: Thesaurus) published In Vienna by
the Internaticnal Atomic Energy Agency.

DATA TRANSMISSION; DIGITAL COMPUTERS; |BM COMPUTERS; PROGRAMMING
LANGUAGES

INTRODUCTION

CONTENTS

THE DATERCOM SYSTEM

2.1 General Dlscussion

2.2 Terminal Access to the IBM360 Computer

2.2.1
2.2.2
2,2.3
2.2.4

Local aids to non-ACL mode terminal input
Dataway addresses for IBM360 communication
Timing out non-ACL mode activity

IBM360 software for terminal interaction

THE ACL-NOVA SUBSYSTEM
3.1 The ACL Interpreter

3.1.1
3.1.2
3.1.3
3.1.4

Arithmetlc
Variables
Arithmetic expressions

Sequence numbers and statement numbers

3.2 Using ACL-NOVA

3.2.1
3.2.2
3.2.3
3.2, 4
3.2,5%
3.2.6
3.2.7

Hardware conslderations

Entering ACL mode

Operational state of an ACL mode terminal
Input from ACL mode terminals

Error correction in ACL mode

Allocation of space within a work area

Expansion of a user's work area

3.3 Immediate Statements in ACL Mode

3.3.1
3.3.2
3.3.3
3.3.4
3.3.5
3.3.6
3.3.7
3.3.8
3.3.9
3.3.10
3.3.11
3.3.12
3.3.13
3.3.14
3.3.15
3.3.16
3.4 Stored
3.4.1
3.4,2

RUN statement
GO TO statement
LIST statement
SYMBOLS statement
CLEAR statement
DELETE statement
SPACE statement
RENUMBER statement
TRON and TROFF statements
FTRON and FTROFF statements
TYPE statement
PA and PB statements
END statement
EDIT statement
System messages
Interrupting stored program executicn
Statements in ACL Mode
ACCEPT statement
CALL statement

Page

B e S B s A SR Y I I L VA D VU VL I S N

LT T X N
WO e ew = O W WU D DWW NN N - O O

CONTENTS (Continued)

Page
3.4.3 RETURN statement 23
3.4.4 CONTINUE statement 23
3.4.5 STOP statement 23
3.4.6 |F statement 23
3.4.7 PAUSE statement 24

3.5 Error Messages in ACL Mode 24
3.6 Saving and Loading ACL Programs and Symbol Tables Using IBM360 Disk

Storage 25
3.6.1 Saving ACL programs and symbol tables 25
3.6.2 Loading ACL programs and symbol tables 26
3.6.3 Deleting ACL programs and symbol tables 27
3.6.4 The ACL program library 27
3.6.5 The $SLISTACL facility 27
3.6.6 FORTRAN access to ACL symbol tables 28

L, CONCLUS | ONS 29

5. ACKNOWLEDGEMENTS 29

6. REFERENCES 30

GLOSSARY OF TERMS

Table 1 Mathematlical Functions Available in ACL Mode

Table 2 List of ACL Statements

1. INTRODUCT | ON

To cater for small-to-medium scale scientific problems, a conversatlional language
ACL [Bennett & Sanger 1973] was developed at the AAEC Research Establishment. It was
implemented as the multi-user conversational Interpreter ACL-NOVA on a 12K NOVA computer
supporting flve teletypewriter terminals {Sanger 1971]. The performance of ACL-~NOVA was
later improved by the use of a directed-graph syntax analyser [Sanger & Hayes 1974], and
the system was also set up to run on a second NOVA computer, an 8K NOVA 1220 computer,
at the AAEC's Mascot Office.

At that stage, the AAEC computer network [Richardson 1971] was being developed and
the NOVA computer was the first computef to be connected to the AAEC Dataway [Sanger,
Jones & Ellis 1973] and to have access to the 1BM360 computer via the computer network
[Sanger & Backstrom 1973, Sanger 1974]. A special version of ACL-NOVA was then developed
to allow ACL-NOVA to be used at five teletypewriter terminals, while a Tektronix T4002
graphlcal display terminal was used to Interact with programs running in the IBM360
computer. The computer network communication required for the Tektronix access to the
central computer used a fixed Dataway address, and conventions were established for terminal
interaction with the IBM360 programs.

In March 1973, a 24K NOVA 820 computer was installed to run the ACL-NOVA system on a
more dedicated basis. The five teletypewriter terminals were supported by the NOVA 820
computer, and the 12K NOVA computer supporting a teletypewriter terminal and Tektronix
display terminal became fully available for system development work.

The NOVA computer was subsequently used to develop the Dataway Terminal Communication
System, DATERCOM, to allow any terminal to have access to either ACL-NOVA or the
resources of the IBM360 computer. This time, a range of Dataway addresses was made
available for computer network communication, and new conventions were defined for the
terminal interaction with programs running in the IBM360 computer. A number of new
commands were added to ACL-NOVA, and access to the IBM360 computer was used to provide for
-the saving and loading of ACL programs and symbol tables using IBM360 disk storage. The
memory of the NOVA 820 computer was later increased to 32K words, and the DATERCOM system
now supports twenty terminals connected to the NOVA 820 computer In a varlety of ways,

The features of the DATERCOM system In terms of faclilitles available to the terminal
user are described in the sectlions that follow. Terminal access to the 1BM360 computer
is discussed in general terms, including a description of localised error correction
facilities, since the details of the terminal interactions depend upon the particular
IBM360 program invoked by the user. ACL-NOVA, on the other hand, is a complete subsystem
within the DATERCOM system and, aithough the orlginal version has already been extensively
discussed [Sanger 1971], the features currently available to DATERCOM users will be described
in detall. This will allow this document to present a complete description of the terminal
facillities provided by the DATERCOM system.

2. THE DATERCOM SYSTEM
2.1 General Discussion
The DATERCOM system uses the first 8K words of the 32K NOVA 820 computer, leaving

24K words fo; the user work areas, To provide for the maximum flexibility, no space is

reserved for any terminal and the work area is allocated as required. No response is
recelved at a terminal until elther the CNTRL/G character (BEL) or the $ character is entered

at the terminal keyboard. When one of these characters has been pressed, a 138-word

control block is allocated to the terminal and either the ACL-NOVA message is printed out
or the $ character is echoed.

ACL Mode MWhen CNTRL/G 1s entered at the terminal, it is referred to as being in ACL
mode and 1t allows ACL-NOYA to be used in the normal way. One Increment of 512 words (%K)
is allocated to a terminal when it is first initialised, in addition to the 138-word control
block, and further increments of %K are allowed up to a maximum of 4K words. Details of
the current ACL~NOVA facilitles are presented in Section 3.

2.2 Terminal Access to the [BM360 Computer

Non-ACL Mode A terminal is said to be in non-ACL mode when a user enters an appropriate
$ command at a terminai. Entering the $ character causes a 138-word control block to be
allocated to the terminal, and this Is the only work space needed for interacting with
programs in the |BM360 computer. Entering $LOGON for example, causes the 1BM360 program,
LOGON, to be executed. The interactions that can occur between the terminal user and this
program are bullt into the LOGON program, and the DATERCOM system takes a 'passive role'
by printing out anything that Is sent from the 1BM360 program, and by sending to the IBM360
computer any information that is entered at a terminal. Up to 132 characters of information
can be sent at a time by the IBM360 program and up to 80 characters of Information may be
entered at a terminal and then sent to the IBM360 computer in response toc a Read request.

No IBM360 Access |f the IBM360 computer is not available when the $command is entered
{or there is not sufficient space in the I1BM360 computer to run the program specified, or
the command name has been misspelt), then the message NO ACCESS is printed at the terminal;
but in this case, the user control block is automatically returned to the system and there
will be no further response at the terminal until CNTRL/G or a new $command Is entered.

Uging Question Mark Character to Imterrupt Output The questlon mark character Is
normally used to interrupt the sending of output to a terminal, with the IBM360 program
issuing some appropriate read request to determine the actlion to be taken by the user.

2,2,1 Local aids to non-ACL mode terminal Input

Deleting Single Characters or Cancelling ALl Input In non-ACL mode, DATERCOM provides
for input error correction by allowing the DEL character (RUBOUT) to be used to delete the
last character entered (backslash is echoed), or the CAN character {CNTRL/X) to be used
to cancel the whole line (exciamation mark is echoed).

Tabbing Facility A tabbing facility is also provided to assist the terminal user,
and up to nine TAB settings can be set either by the user or automatically when an IBM360
program is invoked. Once these have been set, then the CNTRL/! character (TAB) can be
used to space out automatically to the different tab settings. For example, assuming
firstly that the terminal has been taken to its leftmost position as the result of echoing

a CR character, and secondly that tabs have been set to 10 and 20, then the Input characters
ABCTAB12TABXCR

will cause the characters
ABCbbbbbb12bbbbbbbbX

to be echoed and sent to the IBM360 computer {where the symbol TAB represents the CNTRL/I

character, CR represents the CR character and b represents the space character).

Setting TAB Positions Users may set their own TAB positions by entering the 'at' (@)
character followed by the tab settings, separated by commas, whenever input is required;
the correct input response can then be entered on the next line. For example, the lnput

characters
@10,20,30CR

would set the tab positions to 10, 20 and 30 with the CR, LF characters beling echoed to
make the terminal go to a new line; the 1BM360 program would still be waiting for the
input that can now be entered on the new }ine.

Pgper Tape Input To cope with users wishing to enter data from paper tape, the null
and LF characters are ignored as input data in non-ACL mode.

2.2.2 Dataway addresses for 1BM360 commuhication

DATERCOM running in the 32K NOVA 820 computer uses any one of the sixteen Dataway
addresses X'70' to X'7F' for loading and saving ACL informatlon. These requests for
IBM360 computer activity are of short duration; for this reason, if there are more requests
than avallable Dataway addresses, the requests are stacked until an address does become
available. Any one of the fifteen addresses X'71' to X'7F' is used for termipal
communication with the IBM360 computer,and the corresponding IBM360 programs are written
so that they do not depend on a particular Dataway address. Terminal interactions with
the |BM360 computer can proceed for fairly long periods; for this reason,these requests
are not stacked and the user is told that there is NO ACCESS if a Dataway address is
not available. For the same reason, Dataway address X'70' is not made available for terminal
interaction to ensure that there is at least one Dataway address available for ACL load
and save reguests.

In the original 12K NOVA computer, any of the four addresses X'58' to X'BB' are used
for ACL loadlng and saving, while the addresses X'59' to X'SE' are also used for terminal
interaction with the I1BM360 computer.

2.2.3 Timing out non-ACL mode activity

To ensure that the Dataway addresses used for terminal communication with the I BM360
computer are used efficlently, terminals in non-ACL mode are timed-out after nine minutes
of inactivity. The message TIME-OUT is printed at the terminal and the user control block
is automatically returned to the system; there will be no further response at the
terminal until CNTRL/G or a new $command 1s entered.

2,2.4 1BM360 software for terminal interaction

I1BM360 programs were written to support ACL loading and saving [Backstrom 1975}, and
a number of programs developed to interact with DATERCOM terminals, These programs provide
extensive terminal support for terminal users in the form of conversational remote job
entry facilities ($LOGON), IBM360 plotter output viewing facilities ($PLOT), and terminal
printer output facilities ($PRINT and $PRINTER), [BM360 Assembler routines have also been
set up to provide FORTRAN access to ACL symbol tables [Backstrom 1975]. The Attention
signalling capabilities of DATERCOM [Sanger 1976] have also been used in cohJunction with
modifications made to the HASP system [Johnstone 1974] to allow users at DATERCOM
terminals to display the status of jobs running in the IBM360 computer ($#CONSOLE).

3. THE ACL-NOVA SUBSYSTEM
3.1 The ACL Interpreter

The ACL interpreter has now been set up as part of the DATERCOM system to provide users
with dedicated access to ACL-NOVA. In ACL mode, ACL statements can be entered at any of
the DATERCOM terminals and elther executed immediately or stored for later execution. An
'echo-checking' mechanism is used to ensure that only valid statements are entered.

The ACL interpreter can be considered as having three maln parts. One part, the
interrupt Handler, accepts input characters from a terminal, stores them in a look-ahead
buffer located in the user control block, and schedules them for analysis by the second
part, the Syntax Analyser. The Syntax Analyser checks the validity of the terminal input,
stores it essentially as a string of source characters In a buffer area located In the
appropriate user control block and schedules the Interrupt Handler to echo the appropriate
output characters at the terminal. All terminal output is, In fact, scheduled through the
Interrupt Handler. The third part, the Background Program, controls ACL statement execution.
Requests for statement execution from each terminal are treated at the same priority level.
Each terminal is serviced in a round-robin approach with the computer processing one
statement at a time for each user. Thus the Background Program (i) executes an immediate
statement by interpreting the source string stored in the user control block and performing
the indicated operations, (ii) stores a statement for later execution by moving the
character string from the contro} block to the user work area, and (iii) executes a stored
program by fetching one statement at a time from the user work area and moving it into
the control block for processing as in {i).

DATERCOM normally executes the Background Program processing ACL statements or checks
whether there Is a statement to be executed. However, the Background Program can be
interrupted at any time by input or output operations at a terminal; these interrupts
are serviced completely and all required syntax analysis is performed before control is
returned to the Background Program.

3.1.1 Arithmetic

Floating Point Numbers All arithmetic is performed on 32-bit floating point numbers.
These numbers have a sign bit, a 7-bit characteristic In the well-known excess bh-exponent
notation, and a 2U-bit fraction. This form corresponds to the short fleating point number

used on the IBM360 computer and can represent numbers in the range:
lE;_GSSnumI::er:{(I--l6-6).I(S63 ,
=79 75
or approximately 5.% x 107" "< number<7.2 x 1077,

Input Values in Free Format For input, the numbers may have free format; that is,

they may be integers, may contain a decimal point or may contain an exponent.
Examples
327, 1.231, .0014, -1.45E+12, 3E2.
3.1.2 Variables _

Three types of variables may be used; a simple variable, a singly subscripted
variable or a dbubly subscripted variable.

Simple Variables A simple variable name must begin with an alphabetic character and

may be followed by up to three alphanumeric characters.

Singly Subscripted Variables Singly subscripted variables consist of an alphabetic
character, which may be followed by an alphanumeric character, followed by an arithmetic
expression (see Section 3.1.3) enclosed in brackets. The arithmetic expression is evaluated

and when converted to Integer form should specify a subscript value in the range 0 to 65 535.

Doubly Subscripted Variables Doubly subscripted variables consist of an alphabetic
character, which may be followed by an alphanumeric character, followed by two arithmetic
expressions which are separated by a comma and are enclosed in brackets. Each of these
arithmetic expressions is evaluated and, when converted to integer form, should specify
a subscript value in the range 0 to 255,

Examples
A,AIB2,ZA,RETN,..... simple variables,
AC(1),D1(L+X-3/2E1) ,X(1«3+N«2),... singly subscripted variables.
B3(7,2),Y (I«l+], «J+INT (BX (Ac3)+h+X<3)),... doubly subscripted variables.
3.1.3 Arithmetic expressions

Operands The basic operands in an arithmetic expression are varlables and numbers.

The relevant operators are +, -, % ,/(divide), + (power), < (assignment) and the built-in
mathematical functions ABS,SIN,C0S,TAN,ASN{arcsin}, ACS{arccos),ATN(arctan),EXP,L0G, INT,
SQR,RNDt and DPT+ (see Tabie 1).

Mathematical Operators The mathematical operators have the usual hlerarchy with the
order of execution as + first, then * or / at the same level and finally + or - at the
same level, Brackets may be used to override the mathematical hlerarchy,.

Assigning Values to Variables |f a variable Is followed by an assignment arrow (<), then
during statement execution the expression to the right of the assignment arrow is evaluated
and its value given to that varlable. The variable name and its value in floating point form
are stored in a symbol table in the user work area.

Multiple Assignments Multiple assighments may occur in the one arithmetic expression
and, in this case, assuming first of all that the expression Is bracket free, the rightmost
assignment arrow is located, the expression to the right of this is evaluated and the
resulting value is given to the variable. This process is continued until all the assignments
have been carried out,

Examples
(i} A<3; A 1s assigned the value 3,
(1) C«b+BeXl+2;
Xl Is first assigned the value 2, B is next assignad
the value 2 and finally C is assigned the value 8.
Processing Expressions Containing Brackets In more complicated expressions that contain
a number of levels of brackets plus multiple assignments, the expression Is evaluated by
searching first for the rightmost opening bracket, The expression enclosed between the
corresponding pair of opening and closing brackets (an expression at zero bracket level) is

then evaluated by searching for the rightmost assignment arrow and proceeding as described

i

+The operand of the Pseudo-Random Number Generator function, RND, is restricted to being a
simple variable name as discussed in Table 1 and, unlike the other functions, the value of
this function is stored in the operand variable as well as being used in the expression
evaluation.

¥This function is used in conjunction with the TYPE statement and is described in Section

3.3.11,

in the last paragraph. The bracket processing and assignment arrow processing is continued
until the whole expression is reduced to zero bracket level and evaluated.
Example
Yo (Ac2B) 4 (B+SQR{Z<9)) 42l 5
Z is first assigned the value 9, B is then assigned the value 3,
A is assigned the value 6, X is assigned the value A4 and Y [s
finally assigned the value 63 + 4 = 220.

Output Produced by Evaluating an Arvithmetic Ewpression |f the flrst term in an
arithmetic expression Is a variable followed by an assignment arrow, then no printed
output s produced as the result of its execution; however, the result of executing all
other forms of an arithmetic expression is printed at a terminal in one of two possible
formats depending on Tts magnitude. The number is given in exponent form if 1t Is in the
range | number | < 107* or | number | > 103. [If the number tles in the range 107%<| pumber | <103,
it s printed In non-exponent form with seven significant figures, if necessary. Integers
are printed without a decimal point.

Examples
(1) 3+2+AB]+2.Q53)+causes ABl to be assigned the value 2.453

and the result 11.453 is printed at the terminal.

(i) AX+SQR(C+M*B(I)+1)+3-B+-2) first results in B(1) being
assigned the value 1, C then being assigned the value 4, B being
assigned the value -2 and, finally AX being assigned the
value 7, but nothing is printed at the terminal.

(ii1) (ZZ+8.332055E-3£)cau5e5 22 to be assigned the value 8.332055E-3
and the result .008332056 is printed at the terminal.

(iv) ©6) results in the value of the variable C6 being printed
at the terminal.

Defining Arrays One- and two-dimens loned arrays of data items can be set up by
assigning values to the required singly and doubly subscripted variables. Elements of an
array are thus created one at a time, often via the ACCEPT statement (see Section 3.h4.1},
and they only require symbol table space when they are defined - there is no need to reserve
symbol table space for ACL arrays as there is in FORTRAN with the DIMENSION statement.

3.1.4 Sequence numbers and statement numbers

Each stored statement must have a sequence number in the range 100 to 999. The state-
ments are ordered according to their sequence number; consequently statements in a stored
program may be typed tn any order and Inserted or deleted qufte freely.

A one- or two-digit statement number in the range 0 to 99 may also be assocliated with a
stored statement. Thus, a stored statement can be referred to either by a three-digit
sequence number or a one- or two-digit statement number. It is possibly better to use
statement numbers for branching within a stored program since the branch statements do not
have to be altered if the sequence numbers of the stored statements are changed or if the
stored program is RENUMBERED (see Section 3.3.8).

+Carr|age Return is represented by CR or) in this report.

3.2 Using ACL-NOVA
3.2.1 Hardware considerations

ACL Character Set The terminals used in the original ACL-NOVA system were five ASR
model 33 teletypes with standard character sets. As & result, the character set used for
the ACL language was based on the teletype subset of the standard ASCI| character set at
that time, and consists of the standard upper case alphanumeric characters plus the special
characters "' ' () %+, - . /i ;<> 74«b’ DEL ESC CR BEL CAN. Note that the DEL
character is often referred to as RUB OUT, BEL as CNTRL/G and CAN as CNTRL/X. On some of
the hewer terminals, and even on some teletypes, some of the ASCI| codes are represented
differently; for example, assignment arrow («) is replaced by the underiine character ()
and upwards arrow (+) is replaced by the circumflex character (*). The user must be aware
of these differences in the so-called standard teletype subset of the ASCIi character set.

Lower to Upper Case Translation In ACL mode, lower case alphabetic characters are

translated to upper case alphabetic characters except

(i between quotes in a TYPE statement (see Section 3.3.11),
(i) for Comment Statement input (see Section 3.2.4), and
(i71) for System Message input (see Section 3.3.15).

tn non-ACL mode, lower case alphabetic characters are only translated to upper case
for input after the $ character; that is, for $command input, all input entered in
response to 1BM360 read requests is passed on untranslated to the IBM360 program invoked
by the user.

Echo-checking Using Full-duplex Mode The DATERCOM terminals are operated on-line in
full-duplex mode. This means that a character pressed at the teletype keyboard is not
printed at the teletype until it 1s sent back or 'echoed' by the NOVA computer. By making
use of this feature, only characters that are valid in syntax are 'echoed' at a terminal
and this ensures that only valid ACL statements are accepted by the system. This 'echo-
checking' mechanism is a valuable feature of ACL~NOVA.

3.2.2 Entering ACL mode

A terminal is said to be in ACL mode when a user enters CNTRL/G at a terminal. In this
case a 138-word contro] block and a 512-word work area are allocated to the user, and a
message conslsting of CR and three line feeds, ACL-NOVA, and then another CR and three
line feeds is printed at the terminal,

3.2.3 Operational state of an ACL mode terminal

Depending on the operations that are being carried out at a terminal, each ACL mode
terminal can be considered to be in one of the following states:
. State 1(a): Statements may be stored or immedlate statements

executed; no suspended program.

State 1{b}: Statements may be stored or immediate statements
executed; suspended program.

State 2: Execution of a stored program.

State 3: Suspended program state as the result of executing
an ACCEPT statement.

+Space or blank Is represented by b in this report.

Tnitial Terminal State When ACL mode Is entered by pressing CNTRL/G, the corresponding
terminal Is in state !(a}. Statements may be stored for later execution or immediate
statements executed, ‘

Storved Program State State 2 is entered as the result of executing a RUN statement
(see Section 3.3.1) or an immediate GO TO statement (see Section 3.3.2). The stored program
is executed ohe statement at a time as part of the Background Program.

Interrupting Stored Program State The terminal may go from state 2 to state 1({b) as
the result of executing a PAUSE statement (see Section 3.4,7), by taking note of certain
Pause Before or Pause After conditions (see Sectlon 3.3.12)}, by the questlon mark character
being typed at the terminal, or as the result of an error condltion in the stored program.
Stored statements may now be inserted, modifled or deleted, or immediate statements executed.

Restarting Stoved Program State The terminal returns to state 2 if the first input
character on a line is carriage return and execution continues from the point where the
program was suspended. Execution of the stored program may recommence at a different point
by executing an immediate GO TO statement or it may be restarted by executing a RUN state-
ment.

ACCEPT Statement Input Mode State 3 Is entered as the result of executing an
ACCEPT statement (see Section 3.4.1). In this state an arithmetic expression can be
entered to indicate the value of a variable and, when this is done, the terminal returns
to state 2.

Interrupting ACCEPT Statement Input Mode The terminal may go from state 3 to state
1(b) by typing the question mark character at the terminal. An initial carriage return
will now cause executlon of the ACCEPT statement to be restarted. Execution may recommence
at some other point by use of the immediate GO TO statement or be restarted by executing
the RUN statement.

Returning to Initial Terminal State An immediate STOP statement can be used to go
from state 1(b) to state 1(a), while the stored STOP statement {see Section 3.4.5) and
the stored END statement (see Section 3.3.13) causes the terminal to go from state 2 to
state 1(a).

Completing Work at a Terminal An immediate END statement (see Section 3.3.13) is
used to indicate that a user has completed work in ACL mode and the corresponding control
block and work area are automatically returned to the system,

3.2.4 Input from ACL mode terminals

input begins from column 1, which is taken to be the leftmost position of the teletype
carriage that results from a CR, and may consist of up to 72 characters, {f input is
continued past column 72, it Is cancelled by a line of minus signs and must be entered
again. The discussion of keyboard Input which follows is based on the possibilities that
may occur at certain column positions., It Is presented here to show how the syntax of
the keyboard input deflnes the statement type or operation to be carried out.

Tmmediate Comment Statement Column 1(a): |If the first character is the letter C
followed by a blank, then the characters that follow are taken to be a comment field and
'echo'! without syntax checking.

Entering a Sequence Number Column 1(b): |If the first three characters are numbers
in the range 100 to 999 foliowed by a blank, then this three-digit number 1s taken to be

the sequence number of a stored statement.

Automatic Gemeration of Sequence Numbers Column l{c): |If the first character is a
blank, this indicates that a sequence number is to be generated automatically for the user
and this is typed in columns 1, 2, 3 followed by a space in column 4. The automatically
generated sequence number is ten greater than the sequence number last entered. The sequence
number 110 1s given If no previcus sequence number has been entered.

Immediate Carriage Return Column 1(d): If the first character Is CR In state 1(a),
then carriage return, line feed is echoed at the terminal. In state 1{b), this causes the
terminal to return to state 2 and continue execution from the point where the stored program
was suspended.

Inmediate Statements Column 1(e): |If the characters do not fall into the above
categories, they are syntax checked as though they are part of an immediate statement
(see Section 3.3, Table 2A). On receipt of a 'valid' CR, this immediate statement is
executed.

Deleting a Stoved Statement Column 5(a): If the carriage is positioned at column 5
after column 1{b) or 1(¢) and the next character is CR, then the stored statement with the
sequence number given in columns 1, 2, 3 is deleted.

Entering a Statement Number after a Sequence Number Column 5(b): 1f the carriage is
positioned at column 5 after column 1{b) or 1{c), then a one- or two-digit statement number
in the range 0 to 99 may be entered at the keyboard. When a two-digit statement number is
supplied, the carriage is automatically positioned to column 8. |If a one-digit statement
number is given, this should be followed by a blank and the carrlage is then automatically
positioned to column 8,

No Statement Number after a Sequence Number Column 5(c): 1f the carriage is positioned
at column 5 after cotumn 1{(b} or 1(c), then if no statement number is required, a blank
must be entered and the carriage is automatically positioned at column 8.

Assigning a Statement Number to a Storved Statement Column B(a): |If the carriage is
positioned at column 8 after column 5(b) and the next character is CR, then the statement
number given in columns 5 and 6 is assighed to the stored statement with the sequence number
given in columns 1, 2, 3.

Deleting the Statement Number Asscciated with a Stored Statement Column B(b}: If the
carriage Is positioned at column 8 after column 5(c) and the next character is CR, then no
statement number would now be assigned toc the relevant stored statement.

Stored Comment Statement Column 8(c): |If the carriage Is positioned at column 8 after
column 5{b) or 5(c} and the next two characters are C followed by a blank, then any
characters that follow are taken to be part of a stored comment and they are echoed without
being syntax checked. In state 2, a stored comment is treated as a CONTINUE statement (see
Section 3.h4.4).

Stored Statementa Column 8(d): |If the carrlage is positioned at column B after
column 5(b) or 5(c) and neither of column 8(a), B{b} or 8(c) applies, then the Input is
syntax checked to allow any statement that may be used as a stored statement (see Section
3.4, Table 2B), When this statement is terminated by a 'valid' CR, it is saved in the user
work area.

Examples
(i) 6*3-&) is an immediate arithmetic expression that would be

evaluated immediately and the result printed at the terminal.

-
—

Al+6) is an immediate arithmetic expression that would be
processed immediately and results in Al belng assigned the value
6; nothing is printed at the terminal.
(i11) 108bb2§ﬁ1+6) is an arithmetic expression to be saved. The
sequence number 108 is associated with this statement.
(b indicates that a blank is generated automatically.)
(iv) 6!4b72bDZl3+B+C+9) is an arithmetic expression to be saved.
The sequence number 614 and the statement number 72 are

associated with this statement,

{v) lOSb) would cause the stored statement with the sequence number
108 to be deleted.
(vi) 6]4b3bg) would now cause the statement number 3 to be associated

with the stored statement with the seguence number 614.
{vif) 614bb2§)\mmnd now cause any statement number assoclated with the stored
statement with the sequence number 614 to be deleted.

3.2.5 Error correction in ACL mode

Deleting Characters Errors which occur while a statement is being typed may be
corrected quite simply. For example, to delete the last two characters that were
accepted as input, type <2 } . This would cause the original line of input minus the last
two characters to be tybed on a new line and to be syntax checked as though they were the

original keyboard input. Thus
A2+B+SQR(AS1+C<3)-X3) 4,2) -6< 2)
would result in the new line
A2 « B+SQR(ASI+C « 3)-%3(4,2)

being typed. A one- or two-digit number may follow the < symbol+.

Edit Mode A statement being entered at the keyboard may also be corrected In edit
mode (see Section 3.3.14} by typing <<) after the lfast input character*.

Cancelling ALL Input Finally, If the whole input line is to be deleted, type <<<
after the lTast Input character (the appropriate <n combination can also be used to cancel
all the Input on a line)*.

DEL and CNTRL/X Characters To maintain some compatibility between ACL mode and non-
ACL mode, the DEL character can also be used for single character deletions in ACL mode
(backslash is echoed) and CNTRL/X (CAN) can also be used in ACL mode to cancel all the
input on a line (exclamation mark is echoed)*.

3.2.6 Allocation of space within a work area

Structure of User Work Area The 512-word work area allocated to an ACL mode terminal

is used for storing ACL statements and for the ACL symbo} table. To provide for the most

TThis form of error correction cannot be used to correct input between quotes In a TYPE
statement - the DEL character can be used.

*Only the DEL character can be used to correct input between quotes in a TYPE statement.

1"

efficlent use of core storage, statements are stored starting from the beginning of the
work area and contlnuing towards the end of the work area, whereas symbol table entries are
stored starting at the end of the work area and continuing backwards to the start of the
work area. In this way a program with many statements but few variables, or a program with
few statements but many variables, can be handled.

Space Required for a Stored Statemenmt The number of NOVA words required for each

statement to be stored is defined by the following formula:
W = (N-P+C}/2

where W = number of words required (including internal end of statement
indicators to make the statement finish on a word boundary),
N = number of input characters typed before CR,
= 0, iIf Nisevenorl, 1f N is odd, and
C = 2, if statement Is a CALL statement (see Section 3.4.2) or
an I|F statement that includes a CALL statement (see Section 3.4.6);
zero otherwise.

For example, the statement
427 9 CALL 217

would be stored in eight words.

Space Required for Symbol Table Entries A symbol table entry requires four words;
two words to contain the variable name and two words to contain its floating point value.
The symbol table entries are not ordered and a given entry is located by a sequentlal
search of the symbol table. The choice of this search method simplified the structure of
each work area and is adequate for this application where the symbol table is quite small
for most users.

3.2.7 Expansion of a user's work area

Automatic Work Arvea Expansion When an arithmetic expression is executed by the Back-
ground Program, an initial scan through the expression counts the number, n, of assignment
arrows. During execution of this exbression, a maximum of 4n words may be added to the
symbol table and, if this space is not avallable within the user's own area, the Background
Program allocates the user an additional %K words of work space, if this Ts possible.
Similarly, if a statement to be stored cannot fit into the user's work area, the Background
Program attempts to Increase this work area - a maximum of 4K words of work space is allocated
to each user. |f an extra %K of work space is available, the message AREA EXPANDED is
printed at the terminal (preceded by 2 sequence number if it was in state 2} and processing
of statements continues normally.

Work Area Full |f no extra work space is available, the message AREA FULL is printed
at the terminal {preceded by a sequence number If 1t was in state 2) and the terminal either
stays in state 1{a) or 1{(b) or goes from state 2 to state 1{b). The statement is not
stored away or the indicated statement is not executed, whichever is appropriate. At this
stage the user can determine how much room is left in work area by executing the SPACE

statement (see Section 3.3.7), and-he then has three courses of action open to him:

12

(1) he can try to obtain more space from his own work area by
CLEARIng {see Sectfoh 3.3.5) unnecessary variables from the
symbol table or by deleting uhnecessary statements
{see Section 3.2.4 or Section 3.3.6) =~ this Is, in fact, the
only course open to him if he has reached the 4K limit;

(ii) he can contihue trying to obtain extra work space by repeating the
operation that led to the message AREA FULL being printed at
his terminal in the hope that another user frees some work space;
or

(iii) he can terminate his activity until some other time (remembering
to execute an immedlate END statement so that his work space may
become avallable to another user}.

Return of Work Space to System Once a user Is given additional work space, he retains
it until he completes his work by executing an immediate END statement, or until he re-
inftialises his area by pressing CNTRL/G.

Segmenting ACL Programs and Symbol Tables With the DATERCOM system now making it
possible to save and load ACL programs and/or symbol tables using IBM360 disk storage
(see Section 3.6), it is more feaslble to segment ACL programs into smaller functional
units and also to form data libraries that may be processed by a number of different ACL
programs.

3.3 |Immediate Statements in ACL Mode

Statements which do not have a sequence number associated with them are classed as
immed late statements and executed by the Background Program as soon as a 'valid! CR is
typed. These statements are used to perform single expression evaluation, to control the
execution of a stored program or to perform various editing and debugging functions,
However, the insertion, modification or deletion of stored statements and the Insertion
or deletion of statement numbers associated with stored statements must also be classed as
immed jate statements. Arithmetic expressions, the STOP statement (see Sectlion 3.4.5), and
the #LOAD and #SAVE statements (see Section 3.6) can be executed as immediate statements
in addition to those mentioned specifically below. The basic statement forms used for
immediate statements are summarised In Table 2A.

3.3.1 RUN statement

The RUN statement is used to begin execution of a stored program starting at the state-

ment with the lowest sequence number.
3.3.2 GO TO statement
A GO TO statement takes the form

GObTOb{arith exprn}’

and is used to pass control to the stored statement with the sequence or statement number
obtained by evaluating the arithmetic expression. A GO TO statement may be part of a
stored program but, if it is an immedlate statement, it can begin execution of a stored

program at any statement.

+Curly brackets are used throughout this report to indicate a field that must be

specified.

13

Examples
(1) GO TO Zli) begins execution of a stored program at the statement

with sequence number 211.

{(in) GO TO |+2*2E+2—309) begins execution of a stored program at the
statement with the statement number 91, and alsoc causes the
varfable | to be assigned the value 91.

3.3.3 LIST statement

Stored statements may be listed {printed out) at a terminal {in sequence number

order) by executing the L!ST statement which takes the form
LIST[:][barith exprnl,artth exprn]]tt

A single statement, a group of statements or the entire stored program may be listed, as
shown in the examples below.

If the colon is present, It indicates that the statements are to be punched onto paper
tape. In this case, to give the user time to turn the punch ON, the listing is delayed
until a CR is given as the first character on the next line. When the CR Is entered at
the keyboard, a series of null characters Is sent to the terminal so that five inches of
feeder holes are punched at the start of the tape. Flive inches of feeder holes are also
punched at the end of the listing. Listing may be terminated at any time by entering the
question mark character and, If the statements are being punched out, five inches of feeder
holes are punched after the last statement.

Examples
(i) LIST) causes the entire stored program to be listed.
(i} LIST 67) causes the stored statement with the statement number 67
to be listed.
{11t) LIST 117, 421) causes all the stored statements from sequence number
117 to sequence number 42] to be listed.
3.3.4 SYMBOLS statement
Executlon of the SYMBOLS statement, which takes the form SYMBOLS[:] causes the

contents of the symbol table to be printed out in the form
Al+1,320000E-20
Z13+21

A2(7)+.01
NA(3,7)+.0823

If the colon is typed, the contents of the symbol table are punched onto paper tape, and
again listing may be terminated at any time by entering the question mark character.
The above form of- the symbol table 1isting was chosen s¢ that each line s an Immediate

arithmetic expression. |If the ocutput is punched onte paper tape, It can be read in to
re-initialise the symbol table.

T+Square brackets are used throughout this report to represent optional fields.

3.3.5 CLEAR statement
Clearing Individual Variables Variables may be removed from the symbol table by using
the CLEAR statement which takes the form

CLEAR[bvariable[,variable] ...]

Clearing Arrays |f the character * is used as the subscript for a singly subscripted
variable, or for both subscripts for a doubly subscripted variable, then all of the
elements of the appropriate array are cleared.

Examples
(i} CLEAR B6,M{1),X(3,1)) causes the varlables B6,M{1),X(3,1) to be removed

from the symbol table. .

(i) CLEAR AB(*),BB(*,*Y) causes all of the elements of the singly subscripted
variable A3 and all of the elements of the doubly subscripted varlable
B9 to be removed from the symbol table.

(ii1) CLEAﬁ) causes the entire symbol table to be cleared.
3.3.6 DELETE statement .
The DELETE statement takes the form

DELETE[barith exprn[,arith exprnll]

and allows the whole stored program, an individual statement or a range of stored statements
to be deleted. This statement is used in conjunction with the #SAVES statement (see
Section 3.6.1} to allow data libraries to be saved with no stored program - the ACL program
used to create the symbol table data }ibrary can simply be DELETEd just before saving the
results on IBM360 disk storage,
{(n DELETE 130,170) deletes all stored statements with sequence numbers
in the range 130 to 170.
(11) DELETE 210) deletes the stored statement with the sequence number 210 -
of course, 2|0b) will do the same thing (see Section 3.2.4).
(ii1) DELETE) deletes the whole stored program
3.3.7 SPACE statement

The number of words that are still free In the user's work area out of the number of

words allocated to the user may be printed out by executing the SPACE statement. Executing
this statement immediately after entering CNTRL/G will result in the values 508/512 being
printed out {(four words in the user area are used by the system fof a dummy symbol table
entry). The SPACE statement can be used to indicate the size of a stored program and/or
symbol table 1ibrary and also to indicate the space saved by deleting stored statements
or CLEARing symbol table entries.

3.3.8 RENUMBER statement

Once a stored program has been developed and thoroughly tested, it is often convenient

to renumber the sequence numbers uniformly to allow for future changes. This can be
done by executing the RENUMBER statement that takes the form,

RENUMBER[barith exprn[,arith exprn]]

5

Default Starting Value and Step Size |f there are no operands, the whole stored program
Is renumbered starting with the sequence number 110 and increasing the sequence number in
steps of ten,

Speaifying Starting Value 1f only one operand is present, it is used as the starting
sequence number and the program is renumbered using steps of ten.

Specifying Starting Value and Step Size Both the starting value and the step size
may be specified by supplying two operands.

Range Checking |f a sequence number greater than or equal to 1000 would be generated
by renumbering a stored program, then the message 'RANGE ERROR' is printed out leaviny the
original program unaltered.

WARN I NG ‘

Before using the RENUMBER statement, the user should check +that any GO TO or CALL statements
{including those that follow an IF gtatement) that occur in *the stored program make use of
statement numberlng rather than sequence numbering since use of the RENUMBER statement will
not alter the GO TO statements in the user's program.

The RENUMBER statement has proved useful In renumberTng ACL subroutine packages so
that these can be loaded from IBM360 disk storage without overwriting the user‘s main
stored program.

3.3.9 TRON and TROFF statements

Special tracing facilities are built into the ACL language to assist the user In

debugging a stored program. The result of tracing a stored statement is that any symbol
table assignments that occur while the statement is being executed are printed at the

terminal in the form

{sequence number}b{variable} + {value}
or, for example,

215 A72<6,13

Traeing Individual Statements tndividual statements may be traced by executing an
immedfate statement of the form

TRONb{arith exprn}
before beginning the execution of a stored program. For example, If the Immediate statements
TRON 190)
TRON 220)
TRON 230))

were executed, followed by the execution of the RUN statement (see Sectlon 3.3.1), then any
symbol table assignments that occurred as a result of executing statements 190,220 and 230
would be printed out every time they were executed. When the user has finished tracing
individual statements, the trace should be turned off by using statements of the form

16

TROFFb{ar!lth exprn}
or, in the above example,

TROFF 190))

TROFF 220))

TROFF 230)

Complete Program Trace (f a user Is really having trouble with a stored program, then

a complete trace of program execution can be obtained by executing the immediate statement
TRON)

before executing the RUN statement. Every stored statement that is subsequently executed
is listed at the terminal and traced. When the full trace is finished the Tmmediate state-

ment
TROFF)

should be executed. 8
3.3.10 FTRON and FTROFF statements
Stored statement tracing can be controlled stlil further by the use of FTRON and

FTROFF statements. Execution of these statements indicate whether any tracing is to be
allowed - the initial control block state allows tracing to occur (the FTRON state) - so
that the FTROFF statement can be used to tempofarily override the effects of any TRON
statements that may have been executed (subsequent execution of the FTRON statement would
return the user to the former state).

3.3.11 TYPE statement

The results of calculations can be printed at a terminal by using the TYPE statement.

it can be executed Immediately or as part of a stored program, and takes the general form

..]
L]

ol ~

TYPE | b [; [

1

| I——

operand

-
-

.
ki

<arith expro>,[{r 'characters'’
[] arith exprn

Printingjthe Value of Expressions The value of an expression may be typed out In a
format determined by its magnitude, as discussed in Sectton 3.1.3, or entirely In exponent

format. For example

TYPE A3)

causes the value of A3 to be typed in a form determined by its magnitude, whereas TYPE ”A3)
causes the value of A3 to be typed in exponent form, regardless of its magnitude.

When expressions are separated by commas, they are printed on the same line with a
space between each value. Thus, if Al has the value 271 and A(2,1) has the value 6731 in

all of the following examples, then
TYPE A),A(2,1))

causes the line
271 6.73000E+03

to be printed.
Printing Headings or Text Strings Literal data (character output, headings or text

strings) can be printed by enclosing them within apostrophes. For example, the statement
TYPE 'ANSWER=',A})

causes the line
ANSWER=271

to be printed. If an apostrophe is to be printed, then a second apostrophe should foljow

the one required; for example

TYPE 'LOAN AMOUNT SHOULDN'T BE NEGATIVE')
causes the line

LOAN AMOUNT SHOULDN'T BE NEGATIVE

to be printed.
Multiple Line Output To continue output on a new line, a semi-colon should be used
as the delimiter, so that

TYPE AT;A(2,1))
causes the lines

n
6.731000E+03

to be printed. The semi-colon delimiter can also be used to space a number of lines, and
TYPE ;;;)

causes the terminal to space 3 lines: although one line could be spaced by using

TYPE)

18

Pogitioning Output on a Line Output may be placed at a particular carriage position by
indicating the required position by means of an arithmetic expression enclosed between
the symbols less than (<) and greater than (). This positional parameter specifies the
number of leading spaces required and it must appear before the required variable or

literal data and be followed by a comma. For example,
TYPE <30>,"AI,<27>,'A\=')
.causes the line

Col.1 Col.27
Al1=2.710000E+02

to be printed.
Overprinting After printing, the carriage can be left positioned at column 1 by using
the delimiter colon. This allows output to be overprinted by successive TYPE statements;

thus execution of the stored statements

812 TYPE <30>,"Al:
814 TYPE <27>,'Al=!

would also result in the line

Col.l Col.27
Al=2.710000E+02

beling printed.

Lining Up Numerical Output (DPT Funetion) To print numerical output so that the
decimal points of numbers from successive TYPE statements !ine up, the DPT function can
be used in conjunction with the above positional parameters. The argument of the DPT
function is evaluated and the resulting value converted into a form ready to be printed.
The function then takes a value equal to the position of the decimal point relative to
the start of the number. For example, DPT(A}) has the value L, DPT("-Al1} has the value
3 and OPT(A(2,1)) has the value 2. When this function is used with the positional
parameter, numerical output can be lined up In the columns required. For example, execution

of the stored statements
600 TYPE <10-BPT(Al)>,Al
610 TYPE <10-DPT(''~A1}>,"~Al

620 TYPE <10-DPT{A(2,1))>,A(2,1)

cause the lines

Col. 1 Col.9

|

271
-2.710000E+02
6.731000E+03

to be printed with the decimal point beling positioned at column ten.

3.3.12 PA and PB statements

To allow a user to take checkpoints when a stored program 1s being tested, two Pause
statements, Pause Before (PB} and Pause After (PA), can be executed as immediate statements.
Execution of these statements allows for a once-only interruption of the subsequent
execution of nominated stored statements (of course, the same Pause conditions can be
reset when the Pause interruption has occurred).

Pause Switches Associated with Stored Statements Each stored statement has two
Pause switches associated with it, a Pause Before switch and a Pause After switch. Before
each stored statement Is executed, a check 1s made to see whether the Pause Before switch
is ON. If It is, the terminal enters state 1(b) hefore the stored statement is executed

and the message
{seq.no.} PB

is printed out.
In the same way, if the Pause After switch is ON, the terminal enters state 1{b)} after

the stored statement Is executed and the message
{seq.no.} PA

is printed. Both PA and PB may therefore refer to the same statement.
Setting Checkpoints (Turning Pause Switches On) Mhen stored statements are saved,
the Pause switches are turned OFF, but they may be turned ON by executing the statements

{gg} b{arith exprn}
where the arithmetic expression specifies the appropriate sequence or statement number.
Once the PA or PB condition has been noted during stored program execution, the appropriate
Pause switch ls turned OFF.

Checkpointe with Program Tracing When the above statements are used In conjunction
with the trace statements TRON and TROFF (see Section 3.3.9), they allow small sectlons
of a stored program to be thoroughly traced and analysed by the user. These facilitles
thus provide powerful aids to program debugging.

3.3.13 END statement

The immediate END statement [s used to indicate that a user has completed work at a
terminal, and the user control block and work areas are automatically returned to the
system. A stored END statement has the same functlon as the stored STOP statement (see
Section 3.4.5) and completes stored program execution, returning the terminal to state I(a)

with the message
{seq. no.} STOP

being printed out.

NOTE

The immedlate END statement should always be the last statement executed when a user has
completed work 1n ACL mode.

20

3.3.14 EDIT statement

The EDIT statement aliows users to modify statements that have already been saved

as part of a stored program. The statement takes the form
EDITh{arith exprn}

and, when executed, the stored statement corresponding to the sequence or statement number
specified by the arithmetic expression is first printed and the carriage returned to the
next line at column }. At this point, the statement s ready to be edited. To follow the
tedit mode' procedure, consider a pointer to each character in the original statement,
namely the 0$ pointer, where initially 0S is one.

Copying Characters in Edit Mode To copy characters from the original statement, the
SPACE (b) key is pressed once for each character and the copied character becomes virtual
input from the terminal. If this character is syntactically correct, It Is echoed at
the terminal and the 0S polnter increased by one.

Inserting New Characters in Edit Mode To insert a new character, the required
character should be typed and it is echoed if correct In syntax - the 0S5 pointer Is not
altered In this case. The only exception to this is if the space character itself is to
be insertéd and, In this case, the special character ESC should be entered; in 'edit mode'
the syntax analyser translates ESC to the space character, checks the statement syntax and
echoes space {f it is valid.

Skipping Over Existing Characters in Edit Mode To jump over a character in the
original statement, the DEL or RUB OUT character 1s typed and the 05 pointer is increased
by one, without motion of the carriage. Once the 0S pointer has reached the end of the
original statement, further attempts to press SPACE or DEL have no effect. For example,

the stored statement
211 72 A3«6

can be modified by executing the statement
EDIT 211)

or
EDIT 72)

|f the characters

col. i

bbbbbbbb (2)DELD2b)
are typed, after the statement has been listed, the resulting stored statement will be

211 72 A{2)«26

21

3.3.15 System messages

Sending Messages to New Userz To allow system messages to be sent to users a special

command which takes the form
#:[system message]

can be typed at the monitor terminait. Once this statement has been executed, the message
Is printed after the ACL-NOVA message when a user enters ACL mode, or after the $command
when a user enters non-ACL mode; that Is, when a new user logs on to the system,

Broadeasting Messagee to Existing Users To send the system message to users
currently working at DATERCOM terminals, the combination CNTRL/O must be pressed at the
monitor terminal and the message will be printed at each terminal at a time when it is
valid to send a 1lne of output to the terminal.

3.3.16 Interrupting stored program execution

Execution of a stored program may be interrupted by entering the question mark
character, as the result of an error condition In the stored program or as the result
of certain Pause conditions. At this point, the terminal enters state 1(b), and stored
statements may be inserted, modified or deleted, or immediate statements executed. |If
the first input character on a line is CR, then stored program execution resumes from the
point where the program was suspended. Execution of the stored program may recommence
at a different point by executing an immediate GO TO statement, or it may be restarted by
executing a RUN statement.

Hitting the Question Mark Character |f the stored program execution is Interrupted

by the question mark character, then the message
{seq.no.1?

is printed to indlcate the sequence number of the next stored statement to be executed.
This Is the stored statement that would be executed If CR is entered as the flrst
character of the next line.

3.4 Stored Statements in ACL Mode

Each stored statement has a segquence number in the range 100 to 999 and may also
have a statement number ln the range 0 to 99. Stored statements are used to bulld up a
stored program. They are ordered according to their sequence number and may be inserted,
medified, or deleted freely by the user. Stored statements may be typed in any order,
and any newly entered statement will replace a previously saved statement with the same
sequence number. Stored statements are executed as part of a stored program once a RUN
statement or an immediate GO TO statement has been executed and the terminal goes into
state 2. |f an error condition occcurs during stored statement execution, then an
appropriate message s printed and the terminal returns to state 1{b}. This allows the
user to take corrective action before continuing the executlion of his stored program.
The terminal can also go from state 2 to state 1(b) as the result of execution of the

various PAUSE statements or If the question mark character is typed at the terminal.

+The terminal with device code (10)3 is taken to be the monitor terminal.

22

in addition to the statements discussed below, arlithmetic expressions and the TYPE,
END and GO TO statements discussed in Section 3.3 can form part of a stored program. The
basic forms of stored statements are summarised in Table 28B.
3.4.1 ACCEPT statement
Reading Data Using an ACL Program Data may be read by a program by using the ACCEPT

statement which takes the form
ACCEPTb{variabie[,variable]...}

When an ACCEPT statement is executed, its sequence number is typed on a new line followed
by the first varlable name and an assignment arrow. Execution of the stored program is
temporarily suspended, with the terminal going into state 3, until the value of the
variable is specified by an appropriate arithmetic expression terminated by CR. This
procedure Is repeated unti) all of the variables listed in the ACCEPT statement have

been read. The terminal then goes into state 2 and program execution continues normally.

For example, execution of the stored statement
317 10 ACCEPT B10,A(1,1},X

causes the line
317 Bl10«

to be printed cut. When the value of B0 has been given, the 1Tne
317 A(1, 1)«

is typed out. After A(1,1) is given a value, the 1fne

317 X«

is printed. After reading a value for X, the terminal returns to state 2 and the next
stored statement is executed.

Interrupting ACCEPT Statement Input ACCEPT statement processing may be interrupted
by typing the question mark character and the terminal goes from state 3 to state 1(b}.
At thls point, stored statements may be inserted, modified or deleted, or immediate
statements executed. |If an initial CR is used to restart stored program execution,
then the ACCEPT statement is reprocessed beginning with the first operand.

Ervor Conditions With ACCEPT Statement Imput |If an error condition occurs as the
result of processing ACCEPT statement input, then an error message is printed and the user
must specify new input for the variable concerned. In the above example, If the user

typed the expression SQR(-3) as the value of the varilable A(1,1), then the messages

.

SQR RANGE ERROR
317 a1, 1)«

would be printed requesting that the value of A{l,1) be respecified.

23

Correeting ACCEPT Statement Input Errors Errors made while entering ACCEPT statement
input may be corrected In the usual way by using the normal character deletion {DEL and
<n), edit mode (<<} and 1lne cancelling (CAN and <<<) facilities. If an error has been
made with one of the earlier variables, them the user could restart the ACCEPT statement
execution and re-enter all of the variable values. By using the fact that general
arithmetic expressions can be used as ACCEPT statement input, the earlier error can be
corrected by adding zero times the required vartfable assignment to the current ACCEPT
statement input. In the above example, assume that the user noticed that BI10 had
incorrectly been glven the value 4 Instead of 11 at the time that the 1ine

317 X«
printed out. Then by entering
7+0%B10+1 I)

the user can assign X the required value of 7 as well as resetting B10 to 11,

Paper Tape Input Terminals with paper tape reading facilitles can be used to enter
ACCEPT statement input from paper tape. VYalues entered in this way are usually terminated
by a valid CR, but, to cater for a number of AAEC experimental rigs, ACCEPT statement Input
may be terminated by the colon character (:) or the space character (b). For ACCEPT
statement input, the syntax analyser translates colon and space to CR before checking
them for validity.

3.4.2 CALL statement

The CALL statement is used to pass control to a group of stored statements which forms

a subroutine. The statement takes the form
CALLb{arith exprn}

and control is passed to the statement with a sequence or statement number corresponding
to the value of the arithmetic expression. Calls to any depth are allowed.
Subroutine Arguments A}l ACL variables are giobal and subroutine arguments are
accessed via the symbol table.
3.4.3 RETURN statement

The RETURN statement is used to pass control from a set of statements which has

been used as & subroutine to the statement after the last CALL statement that was executed.
3.4.4 CONTINUE statement
The CONTINUE statement causes control to be passed to the next stored statement.
3.4.5 STOP statement
Execution of a STOP statement completes execution of a stored program and causes

the terminal to return to state 1{a) with the message
{seq.no.} STOP

being printed.
3.4.6 |IF statement
Conditional branching may be performed by using the IF statement which takes the form

24

F.EQ. f'arith exprn 1
.NE. TYPE stmt
JF({arith exprn} 3 -GT {arith exprnl)b ACCEPT stmt
.GE. GO TO stmt L
LT, ﬁ CALL stmt
l.LE. RETURN stmt
CONT{NUE stmt
L STOP stmt)

If the logical relatlon between the two arithmetic expressions enclosed In brackets Is
obeyed when the statement is executed, then the third statement outside the brackets is
executed: otherwise control is passed to the next stored statement. For example, executing

the stored statement
273 IF{1«1+1.LE.10) GD TO 20

causes the value of the variable | to be increased by one, and if the new value of | is less
than or equal to ten, then control is passed to the stored statement having the statement
number twenty; otherwise, control is passed to the next stored statement.
Loop Control There is no direct equivalent to the FORTRAN DO statement in the ACL
language, so the above form of the |F statement can be used for program looping, that is,
if the same set of statements is to be executed a number of times.
3.4.7 PAUSE statement

Execution of the simple PAUSE statement causes the terminal to enter state 1(b) with

the message
{seq.no.} P

being printed.
3.5 Error Messages in ACL Mode

When an error condition occurs in ACL mode, an appropriate message is printed at the
terminal. |f a stored program was belng executed at the time the error occurred (state 2),
It is Interrupted, the terminal goes into state 1{b) and the error message with approprlate
sequence number is printed out; this now allows relevant user action to be taken. The

messages, which are self-explanatory, are as follows:

AREA FULL

NN MULTIPLY DEFINED
NN UNDEFINED

SSS UNDEFINED

VBLE UNDEFINED

* OVERFLOW

+ OVERFLOW

/ OVERFLOW

EXP OVERFLOW

SQR RANGE ERROR
LOG RANGE ERROR
SEQ NO RANGE ERROR
SUBSCR1PT ERROR
PRINT POSN ERROR
STOP ERROR

RETURN ERROR

ZERDO DIVISOR

where NN 1s a statement number, SSS is a sequence number and VBLE is a variable name.

25

Warning Messages The message AREA EXPANDED and the System Message {see Section 3.3.15)
will also print out at a terminal as a warning to the user, but this does not interrupt
stored program execution.

3.6 Saving and Loading ACL Programs and Symbol Tables Using IBM360 Disk Storage

Creating User Program Libraries DATERCOM access to the resources of the |BM360 computer
is also used to provide for the storage and retrieval of ACL programs and symbol tables
using IBM360 disk storage. These facilities allow each user to create what is essentially
a private library of ACL programs and data referenced by the user's three fnitials.
Programs can be shared by users, since the system allows programs to be loaded from any
of the ACL user libraries provided the correct initials are supplied. However, programs
can be saved in a user library only if the user's Initlals are validated by the user's
account number.

Information Saved in Internal Code Form The ACL programs and symbol tables are saved
in their internal code form and this provides for efficient program loading as the Information
does not have to be processed by the syntax analyser. The [BM360 program [Backstrom 1975]
transfers the ACL information to and from the NOVA computers, 224 bytes at a time, using
the DATERCOM communication conventions, and then sends an appropriate message to be printed
at the user's terminal to indicate that the user's program has been saved or loaded.

3.6.1 Saving ACL programs and symbol tables

Saving an ACL Program An ACL program cen be saved on |BM360 disk storage by executing

the Tmmediate statement
#SAVEb{ progname, int/acctnmbr}

The program name {progname) can be up to elght characters long - the first letter must be
alphabetic and the rest must be alphanumeric. The initials (int), as contained on the
user's IBM360 job card, and account number (acctnmbr), also comtained on the same Jjob card,
are required to validate the SAVE request - the asterisk character (%) is actually echoed
for each of the account number characters entered to preserve system security. When the

program has been saved, the message
-progname-SAVED AT 10.20 AM ON 76,274

is printed, Indicating the time of day at which the program was saved if the program was
being saved for the first time, or

-progname-REPLACED AT 10.20 AM ON 76.274.

if it was replacing an earlier version.
Saving ACL Program Plus Symbol Table The ACL program plus the contents of the symbol

table can be saved by using the Immediate statement
#SAVESb{progname, int/acctnmbr}

This can be useful for saving a test program and its data for later use.
Saving Only the ACL Symbol Table If only the ACL symbol table is to be saved, then
the stored program should be DELETEd (see Section 3.3.6) and the #SAVES statement executed.

26

ACL data libraries can be saved in this way for later processing by a number of different
ACL programs.
No IBM360 Access When the IBM360 computer is not available for ACL save {or load)

requests, then the message
NO ACCESS

is printed out in response to the #SAVE(or #LOAD} requests. This message can also mean
that there is no space in the |BM360 computer to execute the IBM360 program that satisfies
the ACL save (or load)} requests at the instant that the request was made, and it is worth
trying the request a second time before completing work at a terminal if the user is
dependent on IBM360 storage or retrieval {the LiST: option described in Section 3.3.3
could be used in the case of ACL save problems if a paper tape punch Is avallable at the
terminal).

No IBM360 Respomee |f there is no response at all to the save {or load) request, then
control can be returned to the user if the question mark character or the CNTRL/G character

is pressed. The message
NO ACCESS

will be printed and the terminal returns to state 1{a). This situation will occur if the
|BM360 computer develops a hardware or software problem.

3.6.2 Loading ACL programs and symbol tables

Information previously saved on 1BM360 disk storage can be loaded into the user's work

area by executing the immediate statement
¥LOADL progname, int}

and, in this case, only the program name and user's inftials are required. The message
-progname-LOADED AT 10,30 AM ON 76,275

is printed to indicate that the program has been successfully loaded, or the message
~progname-NOT LOCATED IN ACL LIBRARY

is printed if the program does not exist or is misspelt.
Work Area Expansion Any work area expansions required for the Information being
loaded are carried out automatically by the system without comment but, if there is not

sufficlient work space available, the messages

AREA FULL
LOAD ING TERMINATED

are printed out.
Executing Loaded ACL Programs Information loaded from IBM360 disk storage is stored
in the user work area In the same way as if it has been entered from the terminal in state
i(a). A number of load requests may be used, for example, to load an ACL main program,
an ACL subroutine package and the ACL symbol table library containing the data to be processed;

once these three load requests have been satisfied, execution of the RUN statement or an

27

immediate GO TO statement will cause the calculation to be performed.

3.6.3 Deleting ACL programs and symbol tables

To delete ACL Information no longer required on IBM360 disk storage, the user work area
should first be cleared, either by initialising it by entering the CNTRL/G character or by

executing the immediate statements

.CLEAR
DELETE

and then & normal SAVE command |s exatuted
#SAVED{ progname, Int/accnmbr}

This 'null' program SAVE request is Interpreted as a Delete request, and the response will
be

-progname-DELETED AT 11.15 AM ON 76,257
if the Information was removed from the user's library, or
-progname-NOT LOCATED IN ACL LIBRARY

if the program does not exist.

Efficient Use of IBM3B0 Disk Storage |t 1s important that users control the number
of ACL programs and symbol tables saved on IBM360 disk storage as disk space is a valuable
resource that must be shared by all. So far, users have cooperated by tidying up from
time to time and removing unwanted information from their libraries, so there has been no
need to place limitations on the number of programs that can be saved by each user.

3.6.4 The ACL program library

The initfals 'ACL' have been reserved for the ACL program library. Programs in this
library are available for general use and they have been documented, with copies of the

write-ups being avallable from Applied Mathematics and Computing (A.M. & C.} Division.
Any user may contribute to this library by documenting the program that can then be copied
into the ACL library by A.M. & C. Section staff - responsibility for the performance of
contributed programs rests with the program authors. Programs currently available from
the ACL tibrary are:
(1) E1GEN and EIGMAIN (author N.B. Datyner®): an eigenvalue and engenvector
package using the Special Cyclic Jacobi Method.
(i) LRP and LRPW (author P.L. Sanger): a general linear regression package
using full matrix least-squares techniques.
(i11) NLRP and NLRPW {author P.L. Sanger): a general noh-linear regression
package using full matrix least-squares techniques.
3.6.5 The $LISTACL facility
The $LISTACL program [Backstrom 1975] allows the user to list the names of ACL programs

currently held on IBM360 disk storage. To execute the program, the user enters non-ACL

mode by entering the command

%
Vacatlon Student 1975

28

$LISTAC£)
and the response ls
INITIALS:

The user's three initfals should then be entered and the names of the user's ACL programs

are then listed in alphabetical order at the terminal followed by
~ENDin-

where 'n' is the total number in the list. All ACL programs currently stored on disk are
listed If the space character !s entered instead of the three Initials. The list may be

suspended at any time by entering the question mark character and the response is
CONT...

Carriage return will allow the 1ist to contlinue, but anything else will terminate the list
(the number n is the same as If the entire list had been printed).

The LISTACL Catalogued Procedure Listings of ACL programs and symbol tables saved
on IBM360 disk storage can also be printed out on the IBM360 line printer by using the
LISTACL catalogued procedure [Backstrom 1975]. The information to be printed is specified
tn two places on the user's EXEC card; the user's initials are taken from the stepname
and the range of programs required Ts specified in the PARM field. For exampie, assuming

that the user's initials replace the letters 'INT' in the steppames in the following, then
F/INT EXEC L{STACL ,PARM=PROGNAME

lists the program and/or symbol tabie data named 'progname’,
//INT EXEC LISTACL , PARM="'AB%*!

lists all programs starting with the letters AB, and
//INT EXEC LISTACL,PARM=" %!

lists all programs.
3.6.6 FORTRAN access to ACL symbol tables
The FORTRAN callable subroutine ACL [Backstrom 1975] was developed to provide access

to ACL symbol table values saved on IBM360 disk storage. The calling sequence is written
up In the AAE.FORTLIB User's Manual {together with a second subroutine ACLD that gives
access to the ACL Program Library Directory) and is as follows:

CALL ACL('PROGNAME,INT‘,RES,'VARb',GE],&EZ)
to access simple variables,
CALL ACL('PROGNAME,INT',RES,'Vb',I,SE],&EZ)

to access singly subscripted variables, or

29

CALL ACL('PROGNAME, INT',RES,'Vb',|,J,6E1,8E2)

to access doubly subscripted variables,

The first argument (PROGNAME, INT) describes the ACL symbol table name and user's
Initfats; RES is a FORTRAN REAL*L variable to be given the value of the requested symbol
table variable; the third argument (VARb, or Vb)} is the name of the required symbol
table entry in EBCDIC (four characters padded with trailing blanks if necessary for
simple variables, and two characters padded with a trailing blank If necessary for sub-
scripted variables); | is the single subscript of a singly subscripted variable or the
first subscript of a doubly subscripted variable; J is the second subscript of a doubly
subscripted variable; El is the FORTRAN statement number to be given control if the
requested symbol table element Is not located; and E2 is the FORTRAN statement number
to be given control If the requested ACL symbol table itself is not located. The
following FORTRAN DD card Is also required In the FORTRAN GO step:

//GO.ACLLIB DD DSN=AAE.ACLLIB,DISP=5SHR

FORTRAR ACL Subroutine Applicatioms The FORTRAN ACL subroutine has already been used
to develop an 1BM360 program to print summary reports from results saved as ACL symbol
Table values [FPREPORT; MclLaughlin & Wong 1975], and also to develop an 1BM360 program
to plot ACL symbol table values [PLOTACL; Pollard 1975].

L. CONCLUSIONS

The DATERCOM system allows terminals that can communicate with the NOVA computers
to have access elther to ACL-NOVA or to the resources of the [BM360 computer. The system
takes a 'passive role' in the central computer access, and any interactive features must
be built into the particular IBM360 programs invoked by the user. Local error correction
facilitles are provided to assist with the entry of terminal Input: these include
character deletion, line deletion and tabbing features. [BM360 access has proved to be
very popular, with the $LOGON program, for example, resulting in eighteen hundred and
sixty seven LOGON programs being saved on IBM360 disk storage for one hundred and six
users. DATERCOM allows dedicated access to ACL-NOVA and also uses the IBM360 computer
access to provide for the storage and retrieval of ACL programs and symbol tables on
IBM360 disk storage. New ACL statements have been included to supplement these toad and
save features, and eight hundred and seventy ACL programs and/or symbol tables are currently
saved on IBM360 disk storage for one hundred and ten users.

The generality of the IBM360 computer commupicatfon that has been bullt Into the
DATERCOM system and the extenslons made to the ACL-MOVA facilities have thus greatly
expanded the computing power that can be made available to AAEC scientists.

5. ACKNOWLEDGEMENTS

The software development required to provide terminal access to the IBM360 computer

is the result of work done in several areas: The Computer Network software In the PDPIOL
computer and the Attention Handling software in the I1BM360 computer were developed by

Or. D.J. Richardson; the Dataway Terminal Communication software in the NOVA computers

was developed by the auther; and the IBM360 software written by Mr. R.P, Backstrom;

Mr P.J. Ellis designed and built the Serlal Multi-User Terminal System for the NOVA computars
and contributed to the development of the software to support this system,

30

6. REFERENCES

Backstrom, R.P. [1975] - IBM360 Software for the AAEC Computer Network. AAEC unpublished
work.

Bennett, N.W. & Sanger, P.L. [1973] - The Development of the ACL Language and its
jmplementation ACL-NOVA. Aust. Comput. J., 5 (3) 105-113.

Johnstone, 1.L. [1974] - The Development of the HASP Internal Console. AAEC Unpub!ished
work.

McLaughlin, R.J. & Wong, S.C.K. [1975] - FPREPORT - A FORTRAN Program to produce summary
Reports from ACL Symbol Table Values. AAEC Unpublished work.

pollard, J.P. [1975] - An IBM360 Program to plot ACL Symbol Table Values. AAEC
Unpublished work.

Richardson, D.J. [1971] - The AAEC Computer Network Design. Aust. Comput. J. 3 (2) 55-59.

Sanger, P.L. [1971] - ACL-NOVA: A Multi-User éonversatlonal Interp?eter for the NOVA
Computer. AAEC/E221 (revised July 1972).

Sanger, P.L. [1974] - Computing Facilities at the AAEC Research Establishment. Aat. Energy
aust., 17(2)2-8.

Sanger, P.L. [1976] - The AAEC Dataway Terminal Communication Sy;tem. Proc. 7th Aust.
Computer Conference, Perth 30 August - 3 September, 2:610-622,

Sanger, P.L. & Backstrom, R.P. [1973] ~ IBM3460 and NOVA Software Developed to Give the
NOVA Computer Access to the Rescurces of the IBM360 Computer. AAEC/E262,

Sanger, P.L. § Hayes, |.J. [1974] - A Directed-Graph Syntax Analyser for the ACL-NOVA
System, AAEC/E312.

Sanger, P.L., Jones, £.G. & Ellis, P.J. [1973] - Programming the NOVA Computer for
Dataway Communication. AAEC/E268.

GLOSSARY OF TERMS

Term Explanation
AAEC Consists of an I1BM360 model 65 central computer, a DEC PDPIL computer linked to
Computer the 1BM360 computer via a selector channel, and nine minlcomputer systems 1lnked
Network to the PDPIL computer via the AAEC Dataway..
PDPIL The flrst stage Tn setting up the AAEC Computer Network consisted of linking an
Computer 8K PDPYL computer to the IBM360 computer to allow up to 128 different devices
Link or destinations to be handled through a normal IBM selector channel as though
they were all standard 1BM devices. The PDPIL computer and 1lnk thus act as the
'telephone exchange'! for Computer Network communication with the IBM360 computer
using selector channel two.
AAEC The second stage of the network consisted of the development of the AAEC Dataway.
Dataway Communication over the Dataway occurs between ldentlical Dataway control units
on a party line basis, with any two computers being able to communicate with
each other if the Dataway is not busy. The NOVA computer was the first computer
on the AAEC Dataway and this was followed by the connection of the PDPIL
computer. Ten minfcomputers have now been connected to the AAEC Dataway.
Dataway An B~bit address code used to establish communication between Dataway control
Addresses | units. 64 of the 256 possible Dataway addresses, in the range X'40' to X'7F',
can currently be used to establish communication with the 1BM260 computer via
the PDPIL computer,and the Dataway address becomes the last 8 bits of the
corresponding UCB address In the [BM360 computer.
UcB The Channel, Control Unit, Device address used by the IBM360 computer for input/
Address output operations.
DATERCOM The Dataway Terminal Communication System developed for the NOVA computers
makes use of the computar network facilities to allow terminals to have access
elther to ACL-NOVA or to the resocurces of the |BM360 computer.
ACL A higher level language named ACL (A Conversational Language) developed at
the AAEC Research Establishment,
ACL-NOVA The implementation of the ACL language as a multi-user conversational’

Interpreter on the DGC NOVA computers.

TABLE |
MATHEMATICAL FUNCTIONS AVAILABLE IN ACL MODE

ACL Function Mathematlcal Purpose

ABS Absolute value

ACS inverse cos (cos™!) (result in radians)

ASN nverse sin (sin"!) (result in radians)

ATN Inverse tan (tan=1) (result in radians)

cos Trigonometric function {argument in radlans)

DPT Positlion of decimal point in number {only used with the TYPE
statement)

EXP Expohential

INT Mathematical integer part (INT(3.1) Is 3,
INT(3.9) is 3, INT(-1.2) is -2)

Log Natural log (base e)

RNDJr Pseudo random number in the range 0 to 1

SIN Trigonometric function {argument in radians)

SQR Square root

TAN Trigonometric functlion (argument in radians)

+The operand must be a simple variable name and, if the
value of this variable is positive, them it is used to
generate the next pseudo random number, whlch then
replaces the original varlable value; this allows
the user to specify a starting value and then use
successive evaluations with the same variable name
argument to generate the pseudo random numbers in the
correct sequence. |If the variable value is negative,
then the last pseudo random number generated by the RND
functlon is used to generate a new pseudo random number
which then replaces the original variable value; this
allows the user to select a random starting value for
the generation of a series of pseudo randem numbers,
For example, 1f X has the value 0., then executlon of
the arithmetic expression A+10*RND(X} will cause X
to be given the value of a pseudo random number in the
range 0 to 1 and A to be given the value of ten times
the new value of X, i.e. a pseudo random number

in the range 0 to 10.

TABLE 2
LIST OF ACL STATEMENTS

{MMED IATE STATEMENTS

Arithmetic expressions
Ch[comments]

CLEAR[bvarlable[,variable] ...]
DELETE[barith exprnl,arith exprn]]
EDITb{arlth exprn} .

END

FTROFF

FTRON

GObTOb{arith exprn}

LIsT[:]1[barith exprn[,arith exprnl]
PAb{arith exprn}

PBb{arith exprn}

RENUMBER[barith exprn[,arith exprn]]
RUN

SPACE

STOP

SYMBOLS[:]

TROFF{barlth exprn]

TRON[barith exprn]

L] e t [g]:...}
TH g

where the operands take the form,[<arith exprn>,] | 'characters’
['"] arith exprn

#LOAD{bprogname, Int} l

#SAVE[S]{bprogname, Int/acctnmbr}

#:[system message]

STORED STATEMENTS

ACCEPTb{vartable[,varliable] ...}

Arlthmetic expresslons

Cb [comments]
CALLb{arith exprn}
CONT INUE

END

GObTOb{arith exprn}

TABLE 2 (Continued)

.EQ. (arith exprn)
.NE. TYPE stmt
. .GT. : ACCEPT stmt
IF{{arith exprn} 4 "0’ ¢larith e:vcpfn})b“1 G0 TO stmt L
.LT. CALL stmt
.LE. RETURN stmt
CONTINUE stmt
\.STOP stmt J
PAUSE
RETURN
sToP

[f [f] ves] operand f [f] .+« [operand

’ H H ’)

TYPE} b : [:] " [:] "
;e X N

where the operands take the form, [<arith exprn>,]{ 'characters'’ }
["“larith exprn

ws

