

AUSTRALIAN ATOMIC ENERGY COMMISSION

RESEARCH ESTABLISHMENT LUCAS HEIGHTS

FORTRAN IV PROGRAMMES FOR COMPUTATION OF TEMPERATURE AND THERMOELASTIC STRESS IN A HOMOGENEOUS SPHERICAL FUEL ELEMENT dUE TO AXISYMMETRIC HEAT TRANSFER VARIATION OVER THE SURFACE

"School of Nuclear Engineering
University of New South Wales

AUSTRALIAN ATOMIC ENERGY COMMISSION

RESEARCH ESTABLTSHMENT

LUCAS HEIGHTS

FORTRAN IV PROGRAMMES FCP CCMFUTATION OF
TEMPERATURE AND THERMOELASTIC STRESS IN A HOMUGENEOUS SPHERICAI FUEL ELEMENT DUE TO AXISYMMETRIC HEAT TRANSFER
VARIATION OVER THE SURFACE
by
Z. J. HOLY
School of Nuclear Engireering University of New South Wales

ABSIRACTI

Computer programmes together with a brief outline of the theory are presented which enable computatior of temperature and thermoelastic stress fields in homogeneous spherical fuel elements due to axisymmetric heat transfer variation over the surface. Uniform heat generation in the fuel element is assumed.

CONTENTS

1. INTRODUCTION
2. REVIEW OF THE THEORY
2.1 Expansion of a Heat Transfer Distribution ir 2 terms of Legendre Polyamials
2.1.1. Numerical quadrature methods \bigcirc
2.1.2. Least squares method 2
2.2 Coefficients of the Temperature and Stress Series 4
2.3 Evaluation of Temperature and Stresses 6
3. DESCRIPTION OF THE FROGRAMMES 8
3.1 Simpson's "One-trird Rule" 8
3.2 Linear Interpolation with Gaussiar Quadrature 3
3.3 Lagrange Four Point Interpolatior with Gaussian 9Quadrature
3.4 Least Squares Method 10
3.5 Output Form for Stage One Erogrammes 12
3.6 Coefficients of the Temperature and Stress Series 11
3.7 Temperature and Thermal Stress in a Sphere 12
4. ACKNOWLEDGEMENTS 16
5. REFERENCES 16
6. NOTATION 17APPENDIX: Listing of Fortran IV Programmes and SubroutinesFigure 1 Axially symmetric heat transfer variationFigure 2 Typical heat transfer distribution
Figure 3 Heat transfer plotted as function of μ
Figure 4 Stress components

The spherical fuel elements in a pebble hof reastar acre are subiect to nonunilorn heat transfer over their surface, which calises tempercture and stress in-
 for temperature and stresses due to arbitrary heat transfer variation over the surface have been discussed by Thompson (i964 ard i965), practical application of the theory for complation is rot availakle because of the extreme complexily of the problem. A considerable simplificatior: can be achieved ff an axisymmetric heat transfer variation over the surface is assmor, This has bon ambur (Holy 1967) and results obtained for a rumber of experimentally derived and artificially created distributions.

The determination of temperatiure ard stresses for an axisymmetric hoat lranstro variation should be of considerable practical importarce, as the results car be used as efirst approach in a design analysis of the spnerical fuel elements, which as a rule are stress limited. Another applicatior is the temperature calibration of the instrumented spheres used for the determination of the heat transfer coefficient in a bed or array of spheres. The irstrumented sphere, which is internally heated, is calibrated in a stream of coolant, giving rise to axisymmetric heat. transfer distribution over the surface.

In this report programmes writter in Fortran IV language are presented which can be used on any computer having a storage equivalent to or larger than an IBM 7040.

The computation is split into three separate stages. The first expands an arbitrary axisymmetr:c heat transfer distribution in terms of Legendre polynomials. Four different approaches are used, depending or the type of distribution analysed, each one programmed separately. The second stage consists of a programme which uses the results from the first stage to determine the expansion coefficjents, which are used as input data in the third stage programme to give the estimates of the temperature and stress fields through the sphere.

A brief outline of theory involved in each computational stage is now presented.

2. REVIEW OF THE THEORY

For an axisymmetric heat transfer distribution over the surf'ace of a heat producing sphere, such as is shown in Figure 1 , the neat transfer coeficisient variation is a function of angle θ only. Solutions for the temperature and stresses can be: expressed in terms of a truncated series of Legendre polynomials. As a first step in obtaining the solution it is necessary to expard the heat transfer distribution in terms of Legendre polynomials.

2.1 Expansion of a Heat Transfer Distributio in Terms of Legendre Polynomials

Let the distribution (Figure ?) be re-plottai as a fulliou of an alternative

$$
H=H_{0}\left\{I+\frac{h(\mu)}{H_{0}}\right\}=H_{0}\{i+\psi(L)!
$$

The expansion required is that of $\psi(\mu)$, the c mensionless heat trarsfer coefficient variation about the mean H_{0}

Thus:

$$
\psi(\mu)=\sum_{n} \psi_{n} F_{n i}(\mu),
$$

where ψ_{n} are the expansion coefficients with $\psi_{0}=0$, and $F_{n}(\mu)$ are tre Legendrn polynomials of the first kind and the $i^{\text {th }}$ degree The ψ_{r} coefficients are then used as input data for the next programme stage.

Two distinct methods are used in the programme to obtain the required expansion coefficients:
(1) Methods based on $\psi_{n}=\frac{2 r_{i}+1}{2} \int_{-i}^{+i} \psi(\mu) p_{n}(\mu) d \mu$,
with integral being evaluated by suitable numerical quadratures.
(2) Least Squares method.
2.1.1 Numerical quadrature methods

To evaluate the integral $\int_{-1}^{+1} \psi(\mu) \sum_{r_{i}}(\mu) d_{i d}$ the following are used:
(a) Simpson's "One-third rule",
(b) Linear interpolation with Gaussian quadrature,
(c) Lagrange four point interpolation with Gaussian quadrature.

The abscissae and weight factors used here for the 80 th order Gaussian quadrature are those quoted by Davis and Rabirowitz (1958), and the Lagrange four point interpolation formula can be found, for instance, in Abramowitz and Stegun (1964).

2.1.2 Least Squares Method

The principle of Least Squares states that the sum of the squares of the deviations should be a minimum. Thus from the expansion:

$$
\psi(\mu)=\sum_{n} \psi_{n} P_{n}(\mu),
$$

$$
I=\sum_{i}\left\{\psi\left(\mu_{i}\right)-\sum \psi_{n} P_{n}\left(\mu_{i}\right)\right\} \quad \text { is formed, where i refers }
$$

to the $i^{\text {th }}$ point of the given heat transfer distribution.

For a minimum:

$$
\frac{\partial I}{\partial \Psi_{m}}=-2 \sum_{i}\left[\left\{\psi\left(\mu_{i}\right)-\sum_{n} \psi_{n} F_{n}\left(\mu_{i}\right)\right\} P_{m}\left(\mu_{i}\right)\right]=0
$$

where $m=0,1,2,3$
Therefore:

$$
\sum_{n} \psi_{n} \sum_{i}\left\{P_{n}\left(\mu_{i}\right) P_{m}\left(\mu_{i}\right)\right\}=\sum_{i} \psi\left(u_{i}\right) P_{m}\left(\mu_{i}\right)
$$

This can be written concisely in matrix form as:

$$
M \Psi=G
$$

where M is a symmetric matrix with elements $M_{n, m}=\sum_{i} P_{n}\left(\mu_{i}\right) P_{m}\left(\mu_{i}\right)$, and vectors ψ and G are:

The solution is then simply:

$$
\psi=M^{-1} G
$$

Individual Legendre polynomials are generated by a recurrence relation quoted by Kizner (1966) which is well suited for computation:

$$
P_{n}(\mu)=w_{0},
$$

with $\quad w_{n}=1, \quad w_{n-1}=b_{n-1}{ }^{\mu} w_{n}$,
4.

$$
\begin{aligned}
w_{j} & =b_{j} \mu w_{j+1}-c_{j} w_{j+2}, \\
i & =n-2, n-3, \ldots \ldots 0 \\
r_{i} & =\frac{2 i+1}{i+1}, \varepsilon_{i}-\frac{i+1}{i+2}, \\
i & =0,1, \ldots \ldots
\end{aligned}
$$

for
The programmes are designed to give the coeflicients ψ_{0} ard also the average value H_{O}, the input data being the heat transfer coefficient associated with the discrete values of μ

2.2. Coefficients of the Temperature and Eirsis Series

The next programme stage is concerned with tre caiculatior of the temperatur and stress series coefficients, using the results from tne stage one programme

Consider a homogeneous sphere of radius a, wits uniform internal heat generation per unit volume $Q(r)=Q$ and axisymmetric heat transfer variation over the surface as shown in Figure l. Under steady state conditions and measuring temperature T relative to coolant, the problem can be formulated, after introducing the dimensionless parameter $\rho=\frac{r}{a}$, as:
with

$$
\nabla_{\rho}^{2} T+\frac{Q a^{2}}{k}=0
$$

et $T=T_{0}+X$; then the formulation may be separated as follows:

$$
\begin{align*}
& \nabla_{\rho}^{2} T_{0}+S=0 \\
& \left.\frac{\partial T_{0}}{\partial \rho}\right|_{1}+\beta T_{0}(I)=0 \tag{2}\\
& \nabla_{\rho}^{2} X=0 \tag{3}\\
& \left.\frac{\partial X}{\partial \rho}\right|_{1}+\beta(1+\psi(\mu)) X(1)=-\beta \psi(\mu) T_{0}(1) \tag{4}
\end{align*}
$$

where Biot No. $\beta=\frac{\mathrm{H}_{0}{ }^{\mathrm{a}}}{\mathrm{k}}$ and $\mathrm{S}=\frac{\mathrm{Qa}^{2}}{\mathrm{k}}$ is the heat source term.
The solution to (1) and (2) which gives the temperature associated with the mean value of the heat transfer coefficient H_{o}, is simply:

$$
T_{0}=\frac{S}{6}\left(1-\rho^{2}\right)+\frac{S}{3 \beta}
$$

Because of the spherical symmetry involved, the solution +n (3) fon ila perturbation temperature is:

$$
\begin{equation*}
X=\sum_{n} \lambda_{n} \rho P_{n} P_{n}(\mu) \tag{5}
\end{equation*}
$$

Let $\psi(\mu)$, the dimensionless heat transfer coefficient distribution about the mean, be expanded in terms of Legendre polynomials.

Thus:

$$
\begin{equation*}
\psi(\mu)=\sum_{n} \psi_{n} P_{n}(\mu) \tag{6}
\end{equation*}
$$

Substituting (5) and (6) into (4) and applying the orthogonal properties of Legendre polynomials, there results a set of infinite equations for the coefficients λ_{n}. In matrix formulation this can be written:

$$
\left[N+\beta\left\{I+\sum_{n} \sum_{r}(-1)^{r} \frac{(2 n+2 r)!\Psi_{n+2 r}}{2^{n+2 r_{n}}!(n+r)!r!} \tilde{\Omega}^{n}\right\}\right] \lambda=-\frac{S}{3} \psi,
$$

where N is a diagonal matrix with $N_{i j}=(i-I), I$ is a unit matrix, and vectors λ and ψ are defined as:

and $\widetilde{\Omega}$ denotes transpose of the matrix Ω defined by:

Truncation of this set of infinite equations and their solution yields the coefficients λ_{n}, which enable the computation of ectimated temperatures and stresses.

The coefficients obtained from the programme are normalised in the sense that they are computed for $\frac{S}{6}=\frac{Q a^{2}}{6 k}=i$, The same normalisation is also applied in the third stage programme wher computirg the dimerasoless temperatures and stresses.

Suitable subroutines are used to hande the eecessary matrix operations. The matrix inversion is don= "

2.3 Evaluation of Temperaturs ard Stresse

The third stage programme is coricerred wirt the calculation of the temperature and stresses at any point r, θ on the zphere, based on the truncated coefficients λ_{n} from the second stage.

The temperature at a poirıt r, θ is given as:

$$
T(r, \theta)=\sum_{n} \lambda_{n}\left(\frac{r}{a}\right)^{n} P_{n}(\cos \theta)+T_{c}(r)
$$

The perturbation stresses involved are showr in rigure 4 and are obtaired using a formulation by Nowacki (i962) as.

$$
\begin{aligned}
& \sigma_{r r}=\sum_{n} \lambda_{n}\left(\sigma_{r r}\right)_{n}, \quad \sigma_{\theta \theta}=\sum_{r .} \lambda_{n}\left(\sigma_{\theta \theta}\right)_{r j}, \\
& \sigma_{\Phi \Phi}=\sum_{n} \lambda_{n}\left(J_{\Phi \Phi}\right)_{r}, \quad \text { and } J_{r \theta}=\sum_{n} \lambda_{r_{i}}\left(\sigma_{r \theta}\right)_{n}
\end{aligned}
$$

The stress components associated with the individual λ_{n} are:

$$
\begin{aligned}
& \left(\sigma_{r r}\right)_{n}=-\delta_{r} n(n-1)\left(1-\left(\frac{a}{r}\right)^{i}\right)\left(\frac{r}{a}\right)^{n} P_{r}(\mu) \text {, } \\
& \left(\sigma_{\theta \theta}\right)_{n}=\delta_{n_{i}}\left[n\left(n+2-n\left(\frac{a}{r}\right)^{2}\right) p_{n}(\mu)-\left(3-\left(\frac{a}{r}\right)^{\lambda}\right) \mu F_{n}^{\prime}(\mu)\right]\left(\frac{r}{a}\right)^{n}, \\
& \left(\sigma_{\Phi \Phi}\right)_{n}=-\delta_{n}\left[n\left(2 n+1-\left(\frac{a}{r}\right)^{2}\right) P_{n}(\mu)-\left(3-\left(\frac{a}{r}\right)^{2}\right) ; F_{r}(!)\right]\left(\frac{a}{a}\right)^{r} \\
& \left(\sigma_{r \theta}\right)_{n}=\delta_{n}(n-1)\left(1-\left(\frac{a}{r}\right)^{2}\right)\left(\frac{r}{a}\right)^{n}{ }_{\mu}^{\mu} F_{n}^{\prime}(\mu),
\end{aligned}
$$

where:

$$
\mu=\cos \theta, \quad \hat{\mu}=\sin \theta, \quad F_{n}^{\prime}=\frac{d P_{n}(\mu)}{d \mu},
$$

$$
\delta_{n}=\frac{\omega(1-v)}{n^{2}+n+1+(2 n+1) v}, \quad \omega \quad=\frac{E \alpha}{2(1-v)}
$$

In the centre of the sphere $\left(\frac{r}{2}\right)=0$ and the perturbation stresses are then:

$$
\begin{aligned}
& \sigma_{r r}=2 \lambda_{2} \delta_{2} P_{2}(\mu), \quad \sigma_{\theta \theta}=\lambda_{2} \delta_{2}\left[-4 \mathrm{P}_{2}(\mu)+\mu \mathrm{P}_{2}^{\prime}(\mu)\right] \\
& \sigma_{\Phi \Phi}=\lambda_{2} \delta_{2}\left[2 \mathrm{P}_{2}(\mu)-\mu \mathrm{P}_{2}^{\prime}(\mu)\right] \text { and } \sigma_{r \theta}=-\lambda_{2} \delta_{2} \hat{\mu} P_{2}^{\prime}(\mu)
\end{aligned}
$$

The total stresses are obtained by adding the components due to uniform distribution of the mean heat, transfer H_{o} over the sphere surface.

Thus:

$$
\begin{aligned}
& \left(\sigma_{r r}\right)_{t}=\sigma_{r r}+\left(\sigma_{r r}\right)_{O},\left(\sigma_{\theta \theta}\right)_{t}=\sigma_{\theta \theta}+(\sigma)_{0}, \\
& \left(\sigma_{\Phi \Phi}\right)_{t}=\sigma_{\Phi \Phi}+(\sigma)_{0} \text { and }\left(\sigma_{r \theta}\right)_{t}=\sigma_{r \theta}
\end{aligned}
$$

where:

$$
\begin{aligned}
& \left(\sigma_{r r}\right)_{0}=\frac{2 E \alpha \Delta T_{0}}{5(1-v)}\left\{\left(\frac{r}{a}\right)^{2}-1\right\} \\
& \left(\sigma_{\theta \theta, \Phi \Phi}\right)_{0}=(\sigma)_{0}=\frac{2 E \alpha \Delta T_{0}}{5(J .-v)}\left\{2\left(\frac{r}{a}\right)^{2}-1\right\}
\end{aligned}
$$

and ΔT_{0} is the temperature difference between the surface and the centre of the sphere.

It is also useful to combine the effects of all the stress field components by considering an equivalent stress derived from some type of failure criterion. Hencky-von Mise's yield criterion of maximum shear strain energy (Finnie and Heller 1959) is used here, for which the equivalent stress is defined as:
$\sigma^{*}=\frac{1}{\sqrt{2}}\left[\left\{\left(\sigma_{\theta \theta}\right)_{t}-\left(\sigma_{\Phi \Phi}\right)_{t}\right\}^{2}+\left\{\left(\sigma_{\Phi \Phi}\right)_{t}-\left(\sigma_{r r}\right)_{t}\right\}^{2}+\left\{\left(\sigma_{r r}\right)_{t}-\left(\sigma_{\theta \theta}\right)_{t}\right\}^{2}+6\left(\sigma_{r \theta}\right)_{t}^{2}\right]^{\frac{1}{2}}$
The first derivative $P_{n}^{\prime}(\mu)$ required in the calculation of the perturbation stresses is obtained from:

$$
P_{n}^{\prime}(\mu)=(2 n-1) P_{n-1}(\mu)+(2 n-5) P_{n-3}(\mu)+(2 n-9) P_{n-5}(\mu)+\ldots \ldots
$$

which results simply from.the relation (Morse and Feshbach 1953):

$$
P_{n+1}^{\prime}(\mu)-P_{n-1}^{\prime}(\mu)=(2 n+1) P_{n}(\mu)
$$

In the programme the temperatures and stresseis are calculated both in dimensionless form and as actual magnitude values. The dimensionless form is for a normaiiseà heat source of $\frac{S}{6}-\bar{I}$, ille vemperaiures deing expresseủ

where ΔT_{O} is the surface to centre temperature difference. This form is useful when comparing various heat transfer distributions. The actual magnitudes of temperatures and stresses are then calculated for a particular power density which is read in as input data.

3. DESCRIPTION OF THE PROGRAMMES

The Fortran IV programmes and subroutines are listed in the Appendix. In this section their application and the input and output arrangemerts are discussed. The input for the first stage programmes depends on the method used to obtain the required exparision coefficient of the heat trarıfer distribution, while the output is the same for all the programmes. It is assumed that the distribution is given as a function of $\mu=\cos \theta$ and also that the programme variable $X \equiv \mu$ takes on values from 0 to 2 which correspond to $\mu=-1$ to +1 . The expansion of the distribution in terms of Legendre polynomials is calculated for a specified number of terms and then tested by synthesising a distribution for a varied number of terms and comparing this with the original distribution. Depending on the accuracy required, the number of expansion coefficients is then selected to represent the distribution in the next programme stage.

The programmes based on the four different methods of obtaining the expansion are now detailed.

3.1 Simpson's "One-third Rule"

This programme is used when the distribution is a moderately fast varying function, values of which are given for a medium to large number (say 250 to 220) of uniformly spaced values of the argument μ.

Input:

$\mathrm{N}, \mathrm{L}, \mathrm{M}, \mathrm{MN}, \mathrm{LN}, \mathrm{DX}$

$N=$ Number of values of the distribution
$L=N u m b e r$ of coefficients required in the Legendre expansion
$M=$ The initial number of the expansion coefficients used in generating the synthetic distribution eur comparison purposes

MN = Number by which the syntnetic distribution coefficients are incremented

$Y(I), I=I, N$

Values of the distribution at the relevant values of μ, starting with the value at $\mu=-1$ for $I=1$.
3.2 Linear Interpolation with Gaussian Quadrature

If the distribution is a moderately last varying function with values given for a large number (say 220) of uniformly or non-uniformly spaced values of the argument μ, linear interpolation with Gaussian quadrature can be used. This programme can also be used for a slowly varying tunction given by a small number of values (say 80).

Input:
$C(I), B(I), I=I, 40$
The abscissae and weight factors for the 80 th order Gaussian quadrature. (Values are listed in the Appendix).
$\mathrm{N}, \mathrm{L}, \mathrm{M}, \mathrm{MN}, \mathrm{LN}$
The same as in Section 3.1.
$X(I), I=I, N$
Values of the variable X are given as $X=I+\mu$, that is, the variable X takes on values from 0 to 2 , which correspond to $\mu=-i$ to +1 .

$Y(I), I=I, N$

The same as Section 3.1.
3.3 Lagrange Four Point Interpolation with Gaussian Quadrature

This programme should be used mainly for a distribution which is a fast varying function given by a medium to large number of values (say 150 to 220). The values of the argument can be spaced either uniformly or non-uniformly. This can also be used for slowly varying functions for any number of values and its accuracy is superior to the methods used in Sections 3.1 and 3.2.

Input:

Identical to that of Section 3.2.
3.4 Least Squares Method

This is most useful for distributions which are slow to medium fast varyirs functions with uniformiy or non-unifurmiy spacei vaiucs of tho irgiment μ. If a
 argument values are uniformly spaced.

Input:

$\mathrm{N}, \mathrm{L}, \mathrm{M}, \mathrm{MN}, \mathrm{LN}$
$X(I), I=I, N$
$Y(I), I=I, N$

Identical to that in Section $3, \bar{z}$. There is m quadrature

3.5 Output Form for Stage Ore Programmez

This is the same for all the stage cre prograrmes $\mathrm{a}^{\prime \prime} \mathrm{d}$ is giver as follows: INPUT SPECIFICATION
$N=, \quad L=, M=, \quad M N=, \quad L N=$
VALUE OF FUNCTION
$X(I), \quad Y(I), \quad I=L, N$
Values of the original distribution are printed out.
ACTUAL LEG COF
$A(I), I=1, L$
This gives the actual values of the expansion coefficients.
REDUCED LEG COF
$G(I), I=1, L$
Normalised coefficients obtained by dividirg the actual values by the value of the first coefficient.

AVERAGE VALUE OF HEAT TRANSFER $=A(1)$
This is the value of H_{o}.
EXPANSION COEFFICIENTS $Q, G(I), I=2, L$

This lists all the coefficients which nay evertually be used as input data
for the stage two programe. The rumber to be used will depend on the accuracy of the synthetic distribution

COMPARISON OF SYNTHETIC FUNCTION
POLYNOMTAL DEGREE $=M-1$
riginest degree of the polynomial used in synthesising the distribution for

EXPANSION COEFFICIENTS NOW

$Q, G(I), I=2, M$

The values and the number of the expansion coefficients, which, subject to the accuracy test, are used as input data fow the stage wryman .

X COORD
EX
FX
For values of the coordinate $X(I)$ this gives $Y(I)$ and the corresponding values of the synthetic distribution. The accuracy of the print-out is then visually compared and, if satisfactory, the number and values of the expansion coefficient selected for the next programme stage

3.6 Coefficients of the Temperature and Stress Series

This programme enables the computation of the normalised temperature and stress series coefficients, which are subsequeatly used in the stage three programme to obtain the estimates of temperature and stresses. The normalisation is effected by taking the heat source term as $\frac{S}{6}=1$. The data used as input are obtained from the results of the stage one programmes. Examination of the coefficients in the output, after discarding any with magnitude smaller than 10^{-4}, determines the input data for the stage three programme.

Input:
I.DE

This serves as identification for a particular calculation
$\mathrm{N}, \mathrm{NN}, \mathrm{BIO}$
$N=$ order of matrices required to ensure a satisfactory convergence of the truncated temperature and stress series coefficients. As a rule $\mathrm{N} \geqq 40$.

NN $=$ number of expansion coefficients from the stage one programmes which give satisfactory accuracy in representing the original distribution. NN \equiv M.

BIO = Biot No. $=\frac{\mathrm{H}_{\mathrm{c}}{ }^{a}}{\mathrm{k}}$, where in is the average value of the heat trarsfer coefficient, which is againi obtaiced from the stage one programmes

$\operatorname{FE}(I), \underline{T}=1, \mathbb{N}$

$\mathrm{FE}(1)=0.0$, aiso $\mathrm{FE}(I)=0.0$ for $\mathrm{NN}<: \leqq \mathrm{N}$
Output:
IDENTIFICATION IDE $=, \mathrm{N}=, \mathrm{NIN}=$, $\mathrm{BIC}=$
INPUT LEGENDRE COEFFICIENTS
$\mathrm{FE}(\mathrm{I}), \mathrm{I}=\mathrm{I}, \mathrm{N}$
EXPANSION COEFFICIENTS
$\mathrm{A}(\mathrm{I}), \mathrm{I}=\mathrm{I}, \mathrm{N}$
These coefficients are used as input for the stage trye programme after discarding any smaller than 10^{-4}.

3.7 Temperature and Thermal Stress in a spiere

The last programme enables the temperatire and stiresses to be obtained through the whole body of the sphere by varyirg radius r and argle θ, or simply for a fixed radius and variabie θ orily, Ir order to be able to compare the effects of various heat transfer distributions, the output is expressed both in dimensionless form and as actual magritude values. Tre dimensionless temperatures are given as fractions of the surface temperature T_{0} associated with the average value of the heat transfer coefficient io The dimersionless stresses are expressed as $\frac{\sigma}{E \alpha \Delta T_{0}}$, with ΔT_{0} being the certre to surface temperature drop associated with H_{0}. Further, the dimensionless forms are celculated for the same normalised heat source of $\frac{S}{6}=\perp$ as used in the stage two programme, Tre actual magnitudes of the temperature and soresses are calculated for a particular uniform heat generation Q, the irput beirg 1 n the form $\frac{Q a}{H_{0}}$

Input:

BIO, U, E, ALF, M
BIO $=$ Biot No.
$\mathrm{U}=\mathrm{v}$, Poisson's ratio
$\mathrm{E}=$ Young's modulus
ALF $=\alpha$, coefficient of thermal exparision
$M=$ number of temperature ard stress series coefficients from tine stage two programme.
$A(I), I=I, M$
Values of the tomperature ard surces seties coetticients from the stage two programme.

R, Q, DRX, RDX, KB, KC, KD
$R=\rho$, dimensionless radius, for the surface $R=1.0$
$Q=\frac{Q a}{H_{0}}$, uniform heat generation term
$\operatorname{DRX}=$ increments in angle 0 in degrees, usually 10°
RDX $=$ decrements in the radius R, usually 0.1
$K B=1$, temperature and stress calcnlation is carried through the whole or part of the sphere, depeazing on the value of R, in decrements of RDX to $\mathrm{R}=0.0$
$K B=2$, calculation one for a fixed value of R
$K C=1$, calculation carried on for all values of θ from 0° to 130° with increments of DRX. If $R=1$, that is, on the surfacc, the increments are automatically taken as DRX/2.
$K C=2$, this applies for a distribution symmetric about the equator, that is, θ varies only from 0° to 90°
$K D=1$, only the dimensionless form is calculated
$K D=2$, both the dimensionless form and the actual magnitudes are calculated.

Output:
IDENTIFICATION
$\mathrm{BIO}=, \mathrm{U}=, \mathrm{E}=, \quad \mathrm{ALF}=, \quad \mathrm{M}=$
COEFFICIENTS A
$A(I), I=I, M$
The coefficients A read in as input are printed out as identification.
$R A D=R, \quad A N G L E=D G, \quad Q=Q$
This serves as a heading to identify the point r, θ of the sphere at which the following temperatures and stresses are calculated. Q is the uniform heat generation term. The notation used in describing the temperatures
and stresses is that detailed in Section 2.

NORMALISED AND DIMENSIONLESS TEMFEFATURES
These temperatures are calculated for the nomainsed heat source term of $\frac{S}{6}=i$.

RATIOS
This denotes temperatires expressed as exaction on tre surface temperature T_{o} due to H_{o}
 ACTUAL TEMPERATURES

Actual magnitudes of temperatires due to unform heat generation term Q,
PERTUBATION TP=T, DUE HO TUT=TO, TCTAI $T E=T T_{0}$, SURE FO TUS $=T_{O}$ (1)
NORMALISED DIMENSIONLESS STRESSES
These stresses are calculated for the rormalised neat source term of
$\frac{S}{6}=I$, and also expressed in the dimer:sic-iess form $\frac{\sigma}{E \alpha \Delta T_{0}}$
PERTUBATION $S A=\frac{\sigma_{r r}}{E O \Delta T_{O}}, \quad S B=\frac{\sigma_{\theta \theta}}{E \alpha \Delta T_{0}}, \quad S E=\frac{{ }^{C}{ }_{\Phi \Phi}}{E \alpha \Delta I_{O}}, \quad B D=\frac{\sigma_{r}}{E \alpha \Delta T_{0}}$
DUE UNIFORM HO $\operatorname{SRU}=\frac{\left(\sigma_{r r}\right)_{0}}{E \alpha \triangle T_{O}} \quad, \quad \Omega U \frac{(\sigma)_{O}}{E \alpha \Delta T_{O}}$
TOTAL ZSA $=\frac{\left(\sigma_{r r}\right)_{t}}{E \alpha \Delta T_{0}} \quad, \quad Z S B=\frac{\left(\sigma_{\Delta S}\right)_{t}}{E \alpha \Delta T_{0}} \quad, \quad Z S C=\frac{\left(r_{\Phi \Phi}\right)_{t}}{E \alpha \Delta T_{0}} \quad, \quad Z S D=\frac{\left(\sigma_{r \theta}\right)_{t}}{E \alpha \Delta T_{0}}$ EQUIVALENT $\operatorname{SIG}=\frac{\sigma^{*}}{\mathrm{E} \alpha \Delta \mathrm{T}_{\mathrm{o}}}$
PERTB HO RATIOS XRR $=\frac{\sigma_{r r}}{(\sigma)_{0}}, \quad X P T=\frac{\sigma_{\theta \theta}}{(\sigma)_{0}}, \quad X F F=\frac{\sigma_{\Phi \Phi}}{(\sigma)_{0}}, \quad X R T=\frac{\sigma_{r} \theta}{(\sigma)_{0}}$
This gives the ratios of the perturbation stresses to the surface stresses caused by H_{0}. This is of use wher plotting the results.
ACTUAL MAGNITUDE OF STRESSES
The actual magnitude of stresses caused by the wiform heat gereration Q in the sphere.

PERTUBATION ZA $=\sigma_{r r}, Z B=\sigma_{\theta \theta}, \quad Z C=\sigma_{\Phi \Phi}, \quad Z D=\sigma_{\gamma \theta}$

DUE UNIFORM HO SRA $=\left(\sigma_{r r}\right)_{O}, \quad S T A=(\sigma)_{O}$
TOTAI ZAA = $\left(\tau_{r r}\right)_{t}, \quad Z A \bar{B}=\left(U_{\theta \theta}\right)_{t}, \quad Z A C=\left(\sigma_{\Phi \Phi}\right)_{t}, \quad Z A D=\left(\sigma_{r \theta}\right)_{t}$
EQUIVALENT $\operatorname{SAC}=\sigma^{*}$
3.8 Sample of Typical Output

IDENTIFICATION BIO $=2.000 \mathrm{U}=0.310 \mathrm{E}=0.41800 \mathrm{E}+08 \mathrm{ALF}=0.10000 \mathrm{E}-04 \mathrm{M}=8$
COEFFICIENTS A $0.32495 \mathrm{E}+00-0.97483 \mathrm{E}+000.34324 \mathrm{E}+00-0.85341 \mathrm{E}-01$
$0.10605 \mathrm{E}-01-0.26944 \mathrm{E}-02$ 0.36940E-03-0.44170E-04
RAD $=1.000$ ANGLE $=0 . \quad \mathrm{Q}=75.00$
NORMALISED AND DIMENSIONLESS TEMPERATURES
PERTUBATION $T=-0.37768 \mathrm{E}+$ OODUE HO $\mathrm{TU}=0.10000 \mathrm{E}+01$
TOTAL TOT $=0.62232 \mathrm{E}+00 \mathrm{SURF}$ HO TW $=0.10000 \mathrm{E}+01$
RATIOS
PERTUBATION TH $=-0.37768 \mathrm{E}+$ OODUE HO TUD $=0.10000 \mathrm{E}+01$ TOTAL TX $=0.62232 \mathrm{E}+00$
ACTUAL TEMPERATURES
PERTUBATION TP $=-0.94421 \mathrm{E}+$ OLDUE HO TUT $=0.25000 \mathrm{E}+02$
TOTAL TE $=0.15558 \mathrm{E}+02 \mathrm{SURF}$ HO TUS $=0.25000 \mathrm{E}+02$
NORMALISED DIMENSIONLESS STRESSES
PERTUBATION $\mathrm{SA}=-0 . \quad \mathrm{SB}=-0.26792 \mathrm{E}-01 \mathrm{SE}=-0.26792 \mathrm{E}-01 \mathrm{SD}=0$. DUE UNIFORM HO $\operatorname{SRU}=0 . \quad \mathrm{STU}=0.57971 \mathrm{E}+00$
TOTAL $\quad \mathrm{ZSA}=-0 . \quad \mathrm{ZSB}=0.55292 \mathrm{E}+00 \mathrm{ZSC}=0.55292 \mathrm{E}+00 \mathrm{ZSD}=0$. EQUIVALENT \quad SIG $=0.55292 \mathrm{E}+00$

PERTB HO RATIOSXRR $=-0 . \quad \mathrm{XTT}=-0.46216 \mathrm{E}-01 \mathrm{XFF}=-0.46216 \mathrm{E}-01 \mathrm{XRT}=0$. ACTUAL MAGNITUDE OF STRESSES

PERTUBATION $Z \mathrm{ZA}=-0 . \quad \mathrm{ZB}=-0.27997 \mathrm{E}+03 \mathrm{ZC}=-0.27997 \mathrm{E}+03 \mathrm{ZD}=0$.
DUE UNIFORM HO SRA $=0 . \quad$ STA $=0.60580 \mathrm{E}+04$
TOTAL ZAA $=-0 . \quad Z A B=0.57780 \mathrm{E}+04 Z A C=0.57780 \mathrm{E}+04 Z A D=0$.
EQUIVALENT $\quad \mathrm{SAC}=057780 \mathrm{E}+04$

4. ACKNOWLEDGEMENTS

Acknowledgement is due to Professor J. J. Thompson, Head of the School of Nuclear Engineering, University of New South Wales, for his advice and encouragement; to the Australian Institute of Nuclear Science and Engineering for their financial assistance witin the developmert of the programmes; to the staff of the Computing Section of the Australian Atomic Energy Commission for their cooperation and patience and lastly to the A.A.E.C. Drawing Office staff for their assistance with the tracing of the diagrams.
5. REFERENCES

Abramowitz, M. and Stegut: I. A. (1964). - Facdoook 2E Matametical
Functions with Formilas, Graprs aud Matrematiscl Tables, p.8i8.
National Bureai: of Sta\%ciaids, Applied Matrematics series 55,
Davis, P. and Rabinowitz, P. (1958). - Additicral abscissas and weights
for Gaussian quadratures of hign order: Values for $n=64,80$, and 96. Research Paper 2875. journal of Research of the National Bureau of standards, 60 (6):513-614,

Finnie, I. and Heller W. R. (1959) . Creep of Ergineering Materials, p.171. McGraw-Hill.

Holy, Z. J. (1967). - Temperature and stress factors ir a pebtle jed reactor. Paper submitted to the Irstititior of Engineers, Australia.
Kizner, W. (1966). - Error curves for Lanczos' selected points method. The Computer Jourral, $\underline{8}$ (4):3:8
Morse, P. and Feshbach, H. (1953). - Metoods of Theoretical Pnysics, Part I, p. 600, McGraw-Hıll.
Nowacki, W. (1962). - Thermoelasticity, pp.146-147. Divisior i, Vol. 3, International Series of Monographs ori Aeronautics and Astronautics, Pergamon Press.
Thompson, J. J. (1964). - Temperature 1: a sphere with distributed source and variable surface heat tratsfer. AAEC/E128.
Thompson, J. J. (1965). - Thermoelastic stresses in a homogeneous fuel element of a pebble bed reactor, AAEC/TM285.

NOTATION

radius of sphere
coefficient in recurrence relation for $P_{n}(u)$.
coefficient in recurrence relation for $P_{n}(\mu)$
Young's modulus
vector irı Least Squares Method
heat transfer coefficient variation about mean H.
heat transier coefficient distribution
mean value of heat transier coefficient
unit matrix; also derotes sum of squares of derivations
thermal conductivity
symmetric matrix in Least Squares Method
positive integer
diagonal matrix used ir solution
$P_{n}(\mu) \quad n^{\text {th }}$ degree Legendre polynomial of the first kind
Q interral heat generation per unit volume
r
x, y, z coordinate axes
temperature component due to $h(\mu)$
variable in recurrence relation for $P_{r}(\mu)$
coefficient of thermal expansion
Biot number $\frac{\mathrm{H}_{\mathrm{o}} \mathrm{a}}{\mathrm{k}}$
$\delta_{n} \quad$ stress coefficient associated with state n
$\theta, \Phi \quad$ angles of spherical coordinate system
radius vector; also derotes positive integer
heat source term $\frac{Q a^{2}}{k}$
temperature measured relative to coolant
temperature component due to mean value of heat transfer H_{0}

X
w
vector used in solution
expansion coefficient of truncated series associated with $P_{n}(\mu)$
alternative independent variable, $\mu=\cos \theta$
variable in stress formulation, $\hat{\mu}=\sin \theta$
Poisson's ratio
dimensionless radius vector, $\rho=\frac{r}{a}$
stress components as defined in Figure 4

```
equivalent total stress
\psi vector used in solution
\psi(\mu) normaliseä neat transien coefficiont variatior. v(u)=\frac{v(\mu)}{#}
\psi _ coefficient in expansion or }\psi(|)\mathrm{ associated with P Pri
\omega thermoelastic coefficient, }w=\frac{E\alpha}{2(1-0)
\Omega matrix used in solutior.
Subscripts
O due to Ho
n associated with }\mp@subsup{\lambda}{r}{
t total
0,ФФ,rr,r0 as defined in Figure 4 for stress comporerts
```

APPENDEX

EPPANSION O^{-}HEAT TRANSFER IN TERMS OF LEGENDRE POLYNOMIALS
SYMDSONS ONE THERD RULE
OIMENSYON Y(220) gA(50) G (50), XU(220)

1 FORMAT(5I49F7.3)
READ (5,2)(Y(I),I=I,N)
2 FORMAT:1OF7.3)
$K=\{N-1 / 1 / 2$
DO $10 \quad I=1 \cdot L$
$B N=I=1$
$S U M=0.0$
$X=1.0$
CALL POL XMNoBNoX:
SUM $=S U M+X M N * Y(N)$
$x=-1.0$
CALL POL (XMN,BN, X)
SUM - SUM $+X M N * Y(1)$
DO $11 J=2 \cdot K \cdot 2$
$Z=k-J+1$
$X=2 * D X$
$M A=N-J+1$
25 CALL POL (XMN, BN:X)
$S U M=S U M+4 * * M N * Y(M A)$
IFIX.LT.O.OMGO TO 11
$X=-X$
$M A=S$
GO TO 25
11 CONTINUE
$K N=K-1$
DO $12 J=3 \cdot K N 2$
Z $=K-j+1$
$X=Z * D X$
$M A=N-J+1$
26 CALL POL (XMN,BN, X)
SUM $=$ SUM +2 * ${ }^{*} X M N * Y I M A y$
\&FlX.LT.O.O)GOTO 12
$x=-x$
$M A=J$
GO TO 26
I2 CONTINUE
$X=0.0$
CALL POL (XMN, BNOX)
$K M=K+1$
$S U M=S U M+20 * X M N * Y(K M)$
$10 \mathrm{~A}(1)=(20 * B N+1.0) * S U M * D X / 6.0$
DO $70 \quad I=1 \mathrm{~L}$
$70 G: 1)=A(1) / A(1)$
$0035 \quad I=19 N$
$T U=1-1$
35 XU(I) $=T U * D X$
WRITE (69110)
IIO FORMAT (IX,IGHINPUT SPECIFICATION?
WFITE (69111)NoLgMoMN,LNoDX
II FORMAT ($1 \mathrm{X}, 2 \mathrm{HN}=14,2 \mathrm{HL}=14,2 \mathrm{HM}=1493 \mathrm{HMN}=14,3 \mathrm{HLN}=14,3 \mathrm{HDX}=\mathrm{F} 7$-3)
WRITE $(6,66)(X U(1), Y(1), i=1, N)$

66 FORMAT(IX,ITHVALUE OF FUNCTION/IIMAIOEIZ.4 WRITE ($\delta, 45$)(A(I) $9 I=1, L)$
45 FORMAT: 1×14 HACTUAL LEG EOF? SNPIOEIjO5i WRIFEío (72)(Gif)9i=19L)
12 FORMAT $1 \times, 15$ HREDUCED LEG COF $/(1 X, 10 E I 3.5 \%$ WRITEIO,205)AII)
205 FORMAT $(1 X, 31 H A V E R A G E$ VALUE OF HEAT TRANSFER=E13.5
WRITE $(6,206)$ WRITE $(6,206)$
206 FORMAT (IX,22HESPANSION COEFFICIENTS $Q=0.0$
WRITE (6,207)Q,UGIINOI=2, ()
207 FORMAT $11 \mathrm{X}, 10$ E13.5/(IX910E13.5 リ WRITE(6:82)
82 FORMAT (IX,32HCOMPARISON OF SYNTHETEC FUNCTION
50 I $j=M-1$
WRITE(6,151)IJ
151 FORMAT (1X,18HPOLYNOMIAL DEGREE $=14$ 4 WRITE (6,208)
8 FORMAT $I X, 26$ HESPANSION COEFFICIENYS NOW WRITE($6: 209$)Q, (G(i) $i=2, M)$
09 FORMAT (IX,IOE13.5/(1X.10E13.5
WRITE (5,152) $13.5 /(1 \times 910 E 1305 \mathrm{~V}$
52 FORMAT (IX, 13
$K=1$ XCOORD , I3H ACT FUNCT Q I3H SYNT FUNCT
156 EX=XU(K)
$X Y=E X=1.0$
$T R=0.0$
DN $153 \quad I=1, M$ $B N=1-1$
CALL POL (HA, BNo $X Y$)
$153 \mathrm{TR}=\mathrm{T} R+H A * A(I)$ $F X=Y(K)$
WRITE (6,154 IEX, FX,TR
154 FORMAT(IX,3E13.5)
IF(K.EQ.N)GO TO 155
$K=K+1$
GO TO 156
155 IF(M.GE.LN)GO TO 42
$M=M+M N$
END

INCLUDING THE FOLLOWING SUBROUTINES
SUBROUTINE POL

E:PANSION OF HEAT TRANSFER IN TERMS OF LEGENDRE POLYNOMIALS
INEAR INTERPOLATION WITH GAUSSIAN QUADRATURE

KEAD(5,il)(C(I), Bil), $i=1,40$)
1 rurimatiariout,

- AD (5,i)N,L,M,MN,LN

42 RERMAT (Si4)
READ (5,2)(X1)TI=1,N)
READ (5,2)(Y(I), I=1,N);
2 FORMATIIOF7.3)
DO $12 \quad \mathrm{I}=1,40$
$k=81-1$
$C(K)=C(I)$
ClI) $=-C(I)$
$12 B(K)=B(I)$
DO $3 \quad 1=1, N$
$3 L(I)=X(I)-1.0$
$1=1$
$6 U \leq 2(J)-C(I)$
IF(U.EQ.O.O)GO TO 4
IF(U.GT.0.0)GO TO
$J=J+1$
GO TO 6
$4 \mathrm{D}(1)=Y(\mathrm{~J})$
GO T08
$5 V=2(J)-2(J-1)$
$R=Y(d)-Y(J-I)$

8 IFMY.EQ.80;GO TO 9
$r=1+1$
GO TOIO
9 DO $211=1$.
$B N=1-1$
$S U=0.0$
$0022 \mathrm{~J}=1.80$
$x \times=(J)$
CALL POL $\{X M N, B N, X X$,
$22 S U=S U+X M N * D(J) * B: J)$
$21 \mathrm{~A}(I)=(2 . * B N+1.0: * S U / 2.0$
DO $70 \quad 1=1, L$
70 G(I)=A(I)/A(I) GRITEA(s, 110 :
110 FORMAT (1X:19HINPUT SPECIFICATION) WRITE (6, I1IIN,L,M,MN,LN
111 FORMAT $(1 \times, 2 \mathrm{HN}=14,2 \mathrm{HL}=14,2 \mathrm{HM}=14,3 \mathrm{HMN}=14,3 \mathrm{HLN}=14$ WRITE $(6,66)(X(I), Y(I), i=1, N)$
S6 FORMAT ($1 \times, 17$ HVALUE OF FUNCTION/(IX.IOE12.41) WRITE 6,45)(A $(I), i=1, L)$
45 FORMAT $(1 X, 14 H A C T U A L$ LEG COF/(1X,10E13.5)) WRITE (6,72) (G(I),I=I,L)
12 FORMAT($1 X, 15$ HREDUCED LEG COF/(IX:10E13.5)) WFITE(6,205:A(1)
205 FORMAT $(1 X, 31 H A O E R A G E$ VALUE OF HEAT TRANSFER=E13.5) WRYTE $(6,206)$
GORMAT(IX.22HEXPANSION COEFFIC:ENTS
$\omega=0.0$
WRITE(6,207)Q,UG(i),i=29L)

WRITE (Ó, 821
82 FORMAY'IX, 32HCOMPARISON OF SYNTHETIC FUNCTYON. $1, ~=M-1$
WRITE (6,151)I
51 FORMAT $1 \times$, I8HPOLYNOMIAL DEGREE $\$ 149$ WRITE 10,208)
08 FORMAT IIX, ZGREXPANSION COEFFICIENTS NOW:

WRITE (6:I52)
152 FORMAT © $\mathrm{X} \cdot \mathrm{I} 3 \mathrm{H}$

156 EX $=X(K)$
$X Y=E X-1.0$
$T R=0.0$
CO $153 \quad \mathrm{BN}=1, \mathrm{M}$
$B N=1-1$
CALL POL $1 H A, B N, K Y$;
$153 \mathrm{~T}_{\mathrm{R}}=\mathrm{T} R+H A * A(I)$
FX=Y(K)
WRITE(G, I54)EX,FKOTR
154 FORMAT ($1 X, 3 E 13,5 y$
IF K.EQ.NMGO 10155
$K=K+1$
GO TO 156
155 IF(M.GE.LNIGO TO 42
$M=M+M N$
GO TO 150
END

INCLUDINE THE FOLLOW ing SUbroutines SUBROUTINE POL.

EXPANSION OF HEAT TRANSFER IN TERMS OF LEGENDRE POLYNOMIALS AGRANGE FOUR POINT INTERPOLATYON WYTH GAUSS:AN QUADRATURE

I FORMAT(4F10.7)
42 KEAD:S,i,N,L,M,MN,LN

- FOPMATE54:

TEAD (5, 2 ; XXIIY, I=I:N.
READ (5, 2) $(Y(I), I=1, N)$
\therefore FORMAT110F7.3)
DO $12 \quad I=1,40$
$k=81=1$

($2 B(K)=B(I)$
DO 3 Iel,N
$32(1)=x(1)=1.0$
$1=1$
10 yei
$6 \quad U=2(J)-c i l)$
IFIU.EQ.O.0:GO ro 4 IFUU.GT.O.0:GO TO 5 $j=j+1$
GO TO 6
4 DII $=Y(J)$ GO TO 8
5 YFP(J-2) •LE•0/GO TO 20.
1F((JHI).GT.N)BOTO
$A O=Y: J-2)$
$A 3=Y!(1+1)$
XO $=2(J-2)$
$x_{3}=2(J+1)$
GO $10 \quad 255$
$201 A O=Y(1)$
X0: $2(J-1)+Z(J-1)-2(J)$
$A 3=Y(\nu+1)$
$X 3=Z(J+1)$
2 $A 3=Y(1)$
$x 3=2(\sqrt{\prime})+2(J)-21 J-1$
$A C=Y 1 J-2$.
$X O=21 J-2$
255 A1 $=Y(J-1$
$A Z=Y(J)$
$x_{1}=2(J=1)$
X2=2(J)
$T=C(I)$
$V=\left(T-X_{1}\right) *\left(T-X_{2} * *\left(T-X_{3}\right) * A 0 /\left(1\left(X O-X_{1}\right) *\left(X O-X_{2}\right) *\left(X 0-X_{3} y\right)\right.\right.$ $V=V+(T-X O) *(T-X 2) *(T-X 3) * A 1 /\left(\left(X_{1}-X_{0}\right) *\left(X_{1}-X_{2}\right) *\left(X_{1}-X_{3}\right)\right)$ $V_{i=} V_{+}(T-X O)^{*}(T-X 1) *(T-X 3) * A 2 /\left(\left\{X_{2}-X 0\right) *(X 2=X 1) *(X 2-X 3)\right.$ $\left.V=V *(T-X O) *(T-X 1) *(T-X 2) * A 3 /\left(X_{3}-X 0\right) *\left(X_{3}-X_{1}\right) *\left(X_{3}-X_{2}\right)\right)$ $D(I)=V$
8 IFIT.EQ.80)GOTO 9
$I=1+1$
GO TO 10
$\because D 021 \quad I=1, L$

INCLUDING THE FOLLOWING SUBROUT:NES SUSROUTINE POL

$B N=1-1$
$S U=0.0$
$0022 J=1 s 80$
$x x=E!?$
CALL POL (XMN,BN,XX
$22 S U=S U+X M N * D(J) * B(J)$
$21 A(I)=(2 . * B N+1.0$ y 2 SU 2.0
DO $70 \quad 1=1,1$
70 G(I) $=A(I) / A(I)$
WRITEGE,ilo:
110 FORMATIIXOIGHINPUT SPECYFICATION:
WRITEPG,IIIINOLOMSMNOLN
III FORMAIVIX, $2 H N=14,2 H L=I 4,2 H M=1493 H M N=1403 H L N=14$

o FORMAT (ixglimvalue of FUNCTION:ilXsioEyze4 WRITE(6,45) (A(I) OI $=10 \mathrm{~L}$
45 FORMAT IIX, 4 HAACTUAL LEG COF/ 13×9 IOEI WRITE(6,72)(G1Ij i=1,
 WRITE(6,205yA!1)
205 FORMAT $1 \times$ IIIHAVERAGE VALUE OF HEAT TRANSFER=E13.5 WRITEIE:206)
205 FOPMATBIX,22HEXPANSION COEFFICIENTS $Q=0.0$

FORMATP1X.IOE13.5/(1X.IOE13.5y WRITE $(6,82)$
82 FORMAT (IX,32HCKMPARISON OF SYNTHETIC FUNCTION $J=M=1$
RITEPG,I5IMIJ
151 FORMAT $12 \mathrm{X}, 18 \mathrm{HPOLYNOMIAL}$ DEGREE $=14$) WRITE15,208
203 FORMAT I 1×26 HEXPANSION COEFFICIENTS NOW:

 WRTTE(E,i52)
152 FORMATIXP,13H XCOORD , $13 H$ ACT FUNCT $13 H$ SYNTFUNCT y
$156 E X=X(K)$
$X Y=E X-Y .0$
$T R=0.0$
DO $153 \quad \mathrm{I}=\mathrm{I}, \mathrm{M}$
$B N=I=1$
CALL POLPHA,BNTXY
$53 \mathrm{TR}=\mathrm{TR}+H A^{*} A(I)$
FX:Y(K)
WRITE (6, 154)EX,FX,TR
54 FORMAT(IX,3E13.5) IF (K.EQ.N)GO TO 155 $K=K+1$
GO TO 156
55 IF(M.GE.LN)GO TO 42
$M=M+M N$
GO TO 150
END

> ABSCISSAS AND WE:GHTS OF GAUSSIAN QUADRAURE CIIIPEII.I=IPMO $0 . .255390 .00194400 .00784990 .0025035$ 0.99422750 .00418030 .98929130 .0056909 0.98284850 .00119290 .97490910 .1085839 0.96548500 .01016170 .95459070 .0116241 $0.94224270 .01306870 .9284593 \quad 0.0144935$ $0.0132531 \quad 0.01589610 .89667550 .0172746$ 0.87872250 .01862630 .85943140 .0199500 0.83883140 .02124400 .81695410 .0225050 0.83883140 .02124400 .81695410 .0225050 $\begin{array}{llll}0.7038327 & 0=0237318 & 0.7695024 & 0.0249225 \\ 0.140002 & 0.0260752 & 0.7173651 & 0.0271882\end{array}$ 0.4400020 .02607520 .71736510 .0271882 0.68953700 .02825980 .66085980 .0292883 $\begin{array}{llll}0.6310757 & 0.0302723 & 0.6003306 & 0.0312101 \\ 0.5486712 & 0.0321004 & 0.5361459 & 0.0329419\end{array}$ $\begin{array}{lllll}0.5686712 & 0.0321004 & 0.5361459 & 0.0329419 \\ 0.508041 & 0.0337332 & 0.4686966 & 0.034473:\end{array}$ $\begin{array}{lllll}0.528041 & 0.0337332 & 0.4686966 & 0.034473 \\ 0.4338753 & 0.0357605 & 0.3983934 & 0.03579\end{array}$ 0.43387530 .03516050 .39839340 .035792 0.36230470 .03637370 .32566430 .036897 : $0.2885280 \quad 0.0373654 .0 .25095230 .0377763$ 0.21299450 .03812970 .17471220 .0384249 $0.1361640 \quad 0.0386617 \quad 0.09740830 .0388396$ 0.05850420 .03595030 .01951130 .0390178

EXPANSION OF HEAT TRANSFER IN TERMS OF LEGENDRE POLYNOMIALS LEAST SQUARES METHOD
 1AR50ン, $6(50)$
42 READI50I:NGL=MTMN.LN
1 FORMAT 15141

$\operatorname{READ}(5,2)$ iY(1) $, I=19 N:$
2 FORMAT(IOF7.3)
DO $84 \mathrm{I}=1 \mathrm{~L}$
$B N=1=1$
DO $85 \mathrm{~J}=1 \mathrm{I} \mathrm{N}$
$X Y=X(J \forall-1.0$
CALL POL\{XM,BN,XY)
$85 \mathrm{P}(\mathrm{I}, \mathrm{J})=\mathrm{XM}$
34 CONTINUE
DO $86 \quad I=1$,
$D(1)=0.0$
DO $87 \mathrm{~K}=1$, N
$87 \mathrm{D}(I)=\mathrm{D}(I)+Y(K) * P(I, K$
DÓ $89 \mathrm{~J}=\mathrm{Y}=\mathrm{L}$
2190 $K=0$
$88 Z(108) K=1, N$
$88 \quad 2(I, J)=Z(I, J)+P(I, K) * P(J, K)$
89 ZiJ,YisZ:I! J)
36 CONTINUE
CALL BORD (Z1, ZTL) CALL COL (A,Z19D,L) $0070 \quad \mathrm{r}=1 \mathrm{~L}, \mathrm{~L}$
70 G(I)=A(I)/A(I) WRITECGOI10:
$1 亡 0$ FORMATPIX,IGHINPUT SPECIFICATION WRITE (O,IIISNOL M,MNON

WRYTE(6, 56)
6 FORMATRIX, 7 HVALUE $1=1, N$

FORMATRXO
WRITERO205yAREDEE ZEG GOF A 20EI3.5!
205 FORMAT 2 , 2 gali
WRITEPE,2OCO
06 FORMATOOÓ
 Q =0.

WRITE 6,82)
150 YJ=M M 1×32 HCOMPARYSON OF SYNTHETIC FUNCTION WRITE EOBLIVIJ
51 FORMAT $1 X, 18 H P O L Y N O M I A L$ DEGREE $=14$
WRITE(B,208:
WRITE ($1 \times, 26$ HEXPANSION COEFFICIENTS NOW:
9 FORMAT $(1 X, O E, U G(Y), Y=Z, M$

WRITE (6,i52)
152 FORMAT 1 IX, I3H XCOORD , I3H ACT FUNCT ,13H SYNT FUNCT $K=1$
56 EX=X(K)
$X Y=E X-1.0$
TR $=0.0$
DO $153 \mathrm{I}=1$, M
$B N=I-1$
CALL POL (HA,BNTXY)
$53 T R=T R+H A * A(I)$
F $\mathrm{X}=\mathrm{Y}(\mathrm{K})$
WRITE(6,:54)EX, تX,TR
154 FORMAT (IX,3E13.5)
YF (K.EQ.N:GO TO 155
$K=K+1$
GO TO 156
155 IF (M.GE.LN)GO TO 42
$M=M+M N$
GO TO 150
END
INCLUDING THE FOLLOWING SUBROUTINES
SUBROUTINE POE
SUBROUTINE BGO:
SUBROUTINE CO

CUEFFICIENTS O + THE TEMPERATURE AND STRESS SERIES DIMENSION FE (50), WIR(50),VG(50,50), ZZ150,50),WG(50,50), ITW(50,50):A(50)
25 READ(5,4)IDE
FORMAT (14)
READ(59I)N,NN.BIO
FURIVAT:2I4.F6.3)
READ (5,2) (FE(T), $1=1, N$
FORMAT:SE12.4
DÓ $105 \quad 1=1$, NN
$j=1$
$I I=Y-1$
$W R(I)=0.0$
102 JJ=Jー1
$K=I I+2 * J J+$
IF(K.GT.NN)GO TO 105
CALL WA(AW,II,JJ)
WR(I) $=W R(I)+A W * F E(K)$ IF(K.EQ.NNIGO TO 10_{5} $J=J \div 1$
GO TO 102
105 CONTINUE
$L=1$
$=1$
$W R R=W R(I)$
CALL UN(ZZ,N,L)
CALL EQWITW,ZZ,N
CALL SC(WG,ZZ,WRR,N)
CALL EQWIZZ,WG,N)
IFII.EQ.NN:GO TO 107
106 WRR

WRR=WRII

CALL OMG(ZZ.N)
CALL TRP (VGgZZ,N
CALL PWRIZZ,VG,TW,N
CALL EQW (TW,ZZ,N)
CALL SC(VGgZZ,SRR,N)
CALL ADD (ZZ,VG,WGON.
IF(Y.EQ.NN)GO TO 10
CALL EQW (WGoZZoN
$i=i+1$
GO TO 106
107 CALL UN(VG,N,L)
CALL ADD(TW,VG,ZZ,N)
CALL SC(ZZ,TW,BIO,Ni L=2
CALL UN(WG,NoL)
CALL ADD (VGgWG,ZZ,N)
CALL BORD (ZZ, $V+, N$
$S A=-2$.
CALL SCIVG,ZZ,SA,N
CALL COLIA,VGOFE,N
FRITE 6,35 IIDE, N,NN,BIO
35 FORMAT $1 \times, 15 \mathrm{HIDENTIFICATION}=14,2 \mathrm{HN}=14,3 \mathrm{HNN}=14,4 \mathrm{HBIO}=\mathrm{F} 5.2$ WRITE (6,250)
250 FORMATIIX,27HINPUT LEGENDRE COEFFICIENYS:

FORMAT (IX,5E12.4/(iX,5E12.4) WRITE (E,251)
勺I FORMAT $1 \times, 22 H E X P A N S I O N$ COEFFICIENTS: YIX.5E13.5: WRITE (6.2O)(AlI) I I=1, N
20 FORMAT(1X,5E13.5/(1X,5E13.5) GO TO 25 END

INCLUDING THE FOLLOW:NG SUBROUTINES
SUBROUTINE TRP
SUBROUTINE SC
SUBROUTINE ADD
SUBROUTINE OMG
SUBROUTINE EQW
SUBROUTINE PWR
SUBROUTINE WA
SUBROUTINE UN
SUBROUTINE BORL
SUBROUTINE COE.

TEMPERATURE AND THERMAL STRESS IN SPHERE OIMENSION A（50），SRR（50），STT（50），SPF（50），SRT（50）
22 READ 15 ，i ibio，UTE，ALF，M
FORMAT（2F6．3．2E13．5：14
PEAUSO CORATIB：$=19 \mathrm{M}$
2 FORMAT（5E13．5）
READis，OIR，Q，DRX，ROXOKB，KC，KD
σ FORMAT（4F8．3．313：
WRITEIS，150y
150 FORMATIXX，I4HIDENTIFICATION WRITE（ 6,81 YBIO，U，E．ALF，M

F FORMATIIXI4HCOEFFICIENTS AYEEI3．55：
PFE $=3.14159265$
QU $=$ Q＊BrolG。
$O M=E * A L F /(2 . * 11-U!)$
$G=O M^{*}(1,-U)$
$T W=2 . / B Y O$
$55 \quad X=1.0$
FFPR
IF（ R R－0．01）．LE，0．0）GO TO 53
RK＝11。／R）＊＊2
$R B=10-R K$
RH＝30－RK
$R A=1.0$
$007 \mathrm{I}=1 . \mathrm{M}$
$B N=1-1$
CALL POL $1 X M N, B N, X$ ：
$T=T \leftarrow A(I) * R A * X M N$
7 RA＝RA＊R
TU＝1•0＊2•／B10－R＊＊2
TOT＝TU $+T$
$T X=T O T / T W$
TUD $=$ TU／TW
$T H=T / T W$
WRITETOGOR，DG9Q
8 FORMAT IIX， $4 H R A D=F 5.3$ ，$G H A N G L E=F 5.1, \angle H Q=F 6.2 \%$
WRITE ©́9270）
FORMAT $11 \times, 41$ HNORMALISED AND DIMENSIONLESS TEMPERATURES FORMATE，61；T，TU，TOT，TW
61 FORMAT IIX，I5HPERTUBATION TEE13．5，12HDUE HO YUニEEI3 WRITE 6.63 TOT＝E13．59I2HSURF HO TWEEX3．5
63 FORMAT $(X X$ ，
S3 FORMAT 1×9 GHRATIOS：
WRIYE（G，64yTH，TUD，TX
64 FORMATIIX，I5HPERTUBATYON TH＝E13．5．12HDUE HO TUDEE13．5 IIX，I5HTOTAL TK＝E13．5\％
IF（KD．EQ．IDGO To 280
TUT：QU＊TU
$T E=Q U * T O T$
YUS＝QU＊TW
$Y P=Q U * T$
WRITE16，271）
271 FORMATIIX．IGHACTUAL TEMPERATURES

WRITE（6，272）TP，TUT，TE，TUS
2 F FORMAT（IX，15HPERTUBATION TP＝E13．5，I2HDUE HO TUTEE13．5． 11×15 TTOTAL TEEE13．5，12HSURF HO TUSEES3．5：

IF（（ R－O．O1）LE． 0.0$) 60$ roso
00 il $1=19 M$
$4 \mathrm{~A}=\mathrm{I}-1$
$A Z=A B * * 2+A B+1 \bullet+12 \cdot * A B+1 \cdot 1 * U$
DEN＝G／AZ
CALL POL（XA，AB，X ）
$R D=R * * A B$
SRR（I）$=-D E N * A B *!A B-1 \cdot i * R B * R D * \lambda$
CAL DER（AB：XOKD

$\operatorname{STT}(1)=D E N * R D *(A B *(A B+2 \cdot-A B * R K) * X A-Z U)$ $S F F(1)=-D E N * R D *(A B *(2 \cdot * A B+R B) * X A-2 U \&$
$\left.11 S_{R} T: I\right)=D E N *\left(A B_{A} 1 \cdot\right) * R B * R D * X D * P D$
SRRT：$=0.0$
STT $=0.0$
$S F F T=0.0$
$S R T T=0.0$
$0013 \quad I=1, M$
$\operatorname{SRRT}=\operatorname{SRRT} T+A(I) * \operatorname{SRR}(1)$
STTT＝STTT＊A（I）＊STTII）
SFFT＝SFFFT＋AIII＊SFF！
13 SRTT＝SRTT＊A（I）＊SRT（E）
GO TO 51
$50 \quad A B=2.0$
$A Z=7 \cdot 0+5 \cdot 0 * U$
$D E N=G / A Z$
CALL POL（XA，AB，X）
CALL DER（AB，$X, P D$ ）
SRRT＝2＊＊DEN＊XA＊A（3）

SFFT $=$ DEN＊（2．＊XA－X＊PDIKA（3） SRTT $=-D E N * X D * P D * A 13:$
5］$W=E * A L F$
$S_{A}=S R R T / W$
$5 \mathrm{~S}=5 \mathrm{TTT} / \mathrm{W}$
SE＝SFFT／W
SD＝SRTT／W
WRITETE，2731
273 FORMATIIK，33HNORMALISED DIMENSIONLESS SIRESSES； WRITE 6,72 ）SA，SB，SE，SD
72 FORMAT $11 X, 15 H P E R T U B A T I O N \quad 4 H S A=E 13.5,4 H S B=E 13.5,4 H S E=E 13.5$ ， 14HSD $=E 13.5$ ）
$R P=R * * 2$
$S W=2 . /(5 . *(1 .-U))$
$S V=(2 \cdot * E * A L F) /(5 . *(1 .-U))$
$S R=S V *(R P-1 \bullet)$
$S T=S V *(2 . * R P-1$－$)$
$S_{R U}=S R / W$
STU：ST／W
WRITE 6,70 ）SRU，STU
70 FORMAT 1 IX， 15 HDUE UNIFORM HO $4 H S R U=E 13.5 .4 H S T U=E 13.5$ ； $Z R R T=S R R T+S R$
$Z T T T=S T T T+S T$
$Z F F T=S F F T+S T$
ZSA $=2 R R T / W$
$Z S B=Z T T T / W$
ZSC=ZFFT/W
ISO SO
WRITE (6,40)ZSA,ZSB,ZSC,ZSO
40 FORMAT (1X.15HTOTAL
$4 H Z S A=E 13.594 \mathrm{HZSB}=E 13.5,4 \mathrm{HZSC}=E 13.59$ $4 \mathrm{HZSD}=\mathrm{E} 13.5$)
$S U M=(2 R R T+2 T T T+2 F F T) / 3$.
DRR $=2 R R T-S U M$
DTT $=$ ZTTT-SUM
DTT=ZTTT-SUM
$D F F=2 F F T$
$D R T=S R T T$
SIGM $=(D R R * * 2+D T Y * * 2+D F F * * 2) * 3 . / 2$.
SIGM $=(D R R * * 24 D T * * 2+D F F * * 2)$
SIGM $=$ (SIGM $+3 * * D R * * 2 ; * 0.5$
SIGM $=$ SIGIGM+
SIG=SIGM/W
SIG=SIGM/W
WRITE 6,135$)$ SIG
135 FORMAT(IX,15HEQUIVALENT $4 H S I U=E X 13.5$)
$X R R=S A / S W$
$X T T=S B / S W$
$X F F=S E / S W$
XRT:SD/SW
WRITE(6, 89) XRR, XTT, XFF, XRT
89 FORMAT $11 \mathrm{X}, 15 \mathrm{SHPERTB}$ HO RATIOS4HXRR=E13.5.4HXTT $=E 13.5 .4 H X F F=E 13.5$, $14 \mathrm{HXRT}=E 13.51$
IF (KD.EQ. 1)GO TO $26 i$ WRITE (6.275)
275 FORMATIIX,28HACTUAL MAGNITUDE OF STRESSES:
$2 \cdot A=S R R T * Q U$
$Z_{B=S T T T * Q U}$
ZC=SFFT*QU
$2 \mathrm{Z}=$ SRTT*QU
WRITE $6,280, Z A, Z B, Z C, 2 D$
280 FORMAT 1×1.15HPERTUBATION $\quad 4 \mathrm{HZA}=E 13.594 \mathrm{HZB}=E 13.5 .4 \mathrm{HZC}=E 13.59$ $14 \mathrm{HZD}=E 13.5$
$S R A=S R * Q U$
STA $=S T * Q U$
WRITE (6,281)SRA, STA
281 FORMAT 1 X,ISHOUE UNYFORM HO $4 H S R A=E 13.5,4 H S T A=E 13.58$ $Z A A=Z R R T * Q U$
$Z A B=Z T T T * Q U$
$Z A C=2 F F T * Q U$
$Z_{A D}=S R T T * Q U$
WRITE (6.282) ZAA, ZAB, ZAC. こ.
282 FORMAT (1X,15HTOTA
4. 3 A $A=E 13.594 \mathrm{HZAB}=E 13.5 \cdot 4 \mathrm{HZAC}=E 13.53$
$14 H^{2} A D=E 13.5$)
SAC=SIGM*QU
WRITE (6,283)SAC
283 FORMAT (1X,15HEQUIVALENT
$4 H S A C=E 13.5)$
261 IF ($(X$

IFIDG.GE.90.5:GO TO 32
GO TO 53
IFIKC.EQQ.2yGOTO 54 Y'RG.GE. ITO.099: K=-1.0
GO $10 \quad 53$
(ins. 0 - $50+5$ a
$R=R-R D X$
IF (R $R+0.05$: $L E \cdot 0.0 ; G 0$ TO 22
GO TO 55
END
INCLUDING THE FOLLOWING SUBROUTYNES
SUGROUTINE POL
SURRDUTIME OER

DO $2 \mathrm{~J}=1 \cdot \mathrm{~N}$
GH(I, J)=BO*GZ(ig)

- CONTINUE

OEYIRN
ENO
SLBROUTINE ADD(HD:HE,HG,N)
DIMENS ION HD (50,50), HE(50,50), HG(50,50;
DO $11=1, N$
DO $2 \quad 1=1, N$
$2 \mathrm{HD}(\mathrm{I}, \mathrm{J})=\mathrm{HE}(\mathrm{I}, \mathrm{J})+\operatorname{HG}(\mathrm{I}, \mathrm{J})$
1 CONTINUE
REIURN
END
SUBROUTINE OMGUYR,NI
DIMENSION YR(50,50)
DO $11=1, N$
DO $1 \quad I=1, N$
2 2 R $\quad J=1 * N$
2 GRNMNO
$M=N-1$
DO $3 \Sigma=1: M$
AN $=1-1$
$A M=$
$\operatorname{YR}(I, I+1)=(A N+1.0) /(2 . * A N+1.0)$
3 YR(I+1,I)=AM/(20*AM+1.0)
RETURN
END
SUBROUTINE EQW(AX,ATA,N)
DIMENSION AX 50,50 : ATA 50,50)
DO I $1=I \cdot N$
DO $2 J=1+N$
$2 A X(I, J i=A T A(I, J)$
1 CONTINUE
RETURN
END
SUBROUTINE PWRUF,GOH,N
DIMENSION $F(50,50), G(50,50), H(50,50)$
$x=1$
${ }^{4}$ DO $\quad 1 \quad i=1, N$
$F(K, I) \leqslant 0.0$
$002 J=1, N$
$2 \underset{\sim}{F}(K, I)=F(K, I)++(K, J) * H(J, I)$
1 CONTINUE
IFIK.EQ.NJGO TO 3
$K=K+1$
GOTO 4
3 RETURN
END
SUBROUTINE WA('N,NN,NR)
$Z N=N N$
$N=N N$
$L=1$
4 IFIL.EQ.1 IBN=ZN
F! (L.FQ. 1) $\mathrm{BN}=2 \mathrm{R}$
F! $1 . E Q$ ア $18 \mathrm{BN}=2 N+2 R$
IFIL.EQ. $4 ; B N=2 \cdot * Z N+2 \cdot * Z R$

F ($(B N-1 . O 1) \bullet L E \cdot 0.0) F N=100^{1}$
GO TO 3
$1 \quad F N=B N$
$C \mathrm{CH}=\mathrm{BN}$
$26 \mathrm{~B}=0$
IF: GN IOOL:CEODO/GO TO 3
60102
3 IFIL.EQ.1)QI=FN IF(L.EQ.Z)Q2=FN
IF(L.EQ. 3 IQ3 $=F N$
FF(L.EQ.4)Q4=FN
$L=L+1$
IF(L.LT.5)GO YO 4
$M=N N+2 * N R$
IFIM.GT.O: GO TO 7
$Q 5=1.0$
GO TO 8
7 Q $5=2 * * M$
$8 W=Q 4 / 8 Q 1 * Q 2 * Q 3 M Q 5$)
$N A=(Z R / 2 \bullet+0.1$;
$C X=N A * 2$
$C x=C X+0.1$
IF($(Z R-C X)$ OLEOO.OVGO TO 5
$W=-W$
5 RETURN
END
SUBROUTINE UN(UZgNoL)
DIMENSION UZ(50950)
DO $1 \quad I=1, N$
DO $2 J=1, N$
$2 U Z(I, J)=0.0$
1 CONTINUE
IF(L.EQ.I)GO TO 4
DO $3 I=1, N$
$3 \mathrm{UZ}(\mathrm{I}, \mathrm{I})=\mathrm{I}-1$
GO TO 6
4 DO $51=1$,
$5 \operatorname{UZ}(I, Y)=1.0$
6 RETURN
END
SUbroutine coludashb, CEgN, DIMENSION DA 50) $\mathrm{HB}(50,50), \mathrm{CE}(50)$
DO $1 \quad I=1, N$
$D A(Y)=0.0$
DO $2 J=1, N$
2 DA(I) $=\mathrm{DA}(\mathrm{I})+\mathrm{HBUI} \cdot \mathrm{J}) * \mathrm{CE}(\mathrm{J})$
I CONTINUE

RETURN
END
SIJBROUTINE BORD(H,W,M)
DIMENS:ON $W(50,50), H(50,50), R(50,50), S(50,50)$
$Y=W!2,2: / W i 2.21$
$H(1,1)=1.0 /(W(1,1)-W(1,2) * X$
$H(2,1)=-X * H(1,1)$
$X=W(1,2, / W(1,1)$
$H(2,2)=1,0 /(W(2,2)-W(2,1) * X)$
$H(1,2)=-X * H(2,2)$
$\mathrm{N}=2$
$1 K=N$
$\mathrm{N}=\mathrm{N}+1$
DO $2 \quad I=1, K$
$R(N, I)=0.0$
$S(I, N)=0.0$
DO $2 J=1, K$
$R(N, I)=R(N, I)-W(N, J) * H(J, I)$
$2 S(I, N)=S(I, N)-+(I, J) * W(J, N)$
$A L N=0.0$
DO $3 \quad I=1, K$
$3 A L N=A L N+W(I, N) * R(N, I)$
$A L N=A L N+W(N, N)$
$X=1.0 / \mathrm{ALN}$
$X=1.0 \quad I=1 \cdot K$
$H(I, N)=S(I, N) * X$
$H(N, I)=R(N, I) * X$
DO $4 \mathrm{~J}=1$, K
$4 H(I, J)=H(I, J)+S(I, N) * R(N, J) * X$
$H(N, N)=X$
IF (N.LT.M)GO T- 1
RETURN
END

FIGURE 1. AXIALLY SYMMETRIC HEAT TRANSFER VARIATION OVER SURFACE OF A SPHERE

FIGURE 2. TYPICAL HE? TRANSFER DISTRIBUTION AS A FUNCTION OF θ

эyヨuds \forall yOf SIN
 $W / \mathrm{cm}^{-2} \operatorname{deg} \mathrm{C}^{-1}$

