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ABSTRACT

Computer programmes together with a brief outline of the theory

are presented which enable computation of temperature and thermoelactlc

stress fields in homogeneous spherical fuel elements due to axisymmetric

heat transfer variation over the surface. Uniform heat generation in

the fuel element is assumed.
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1. INTRODUCTION

The spherical fuel elements in a pebble h^n react cr cere arc sub.iect to non-

unii'orri heat transfer over their surface, -which causes temperature and stress in-

^^-jo-^c^ GwmjjarcJ wiui uiose based on average heat transfer. While the solutions

for temperature and stresses due to arbitrary heat transfer variation over the

surface have been discussed by Thompson (1964 at.d 1965)., practical application

of the theory for computation is rot available because of the extreme complexity

of the problem. A considerable simplification can be achieved if an axisymmetric

heat transfer variation over the surface is assnmfM , This ITU- b'V^n •;>:•) ];,•:•'•;]

(Holy 1967) and results obtained for a number of experimentally derived and arti-

ficially created distributions.

The determination of temperature and stresses for an axi.symmetric heat transfer

variation should be of considerable practical itriportar.ee, as the results car. be

used as a first approach in a design analysis of the spnerical fuel elements, which

as a rule are stress limited. Another application is the temperature calibration

of the instrumented spheres used for tne determination of the heat transfer coef-

ficient in a bed or array of spheres. The instrumented sphere, which is internally

heated, is calibrated in a stream of coolant, giving rise to axisymmetric heat,

transfer distribution over the surface.

In this report programmes written in Fortran IV language are presented which

can be used on any computer having a storage equivalent to or larger than an IBM

7040.

The computation is split into three separate stages. The first expands an

arbitrary axisymmetr:c heat transfer distribution in terms of Legendre polynomials.

Four different approaches are used, depending on the type of distribution analysed,

each one programmed separately. The second stage consists of a programme which

uses the results from the first stage to determine the expansion coefficients,

which are used as input data in the third stage piogramme to give the estimates of

the temperature and stress fields through the sphere.

A brief outline of theory involved in each computational stage is now presented

2. REVIEW OF THE THEORY

For an axisymmetric heat transfer distribution over the surface of a heat pro-

ducing sphere, such as is shown in Figure 1, the heat transfer coefficient variation

is a function of angle 0 only. Solutions for the temperature and stresses can be

expressed in terms of a truncated series of Legendre polynomials. As a first step

in obtaining the solution it is necessary to expand the heat transfer distribution

in terms of Legendre polynomials.



2.1 Expansion of a Heat Transfer Distributio- in Terms of Legendre Polynomials

Lei the distribution (Figure 2) "be rc-plctteJ as a function 01' an alternative

variable u = cos 9. The heat transfer c 4 1-

r

The expansion required is that of V (u) , the c. mensionless heat transfer co-

efficient variation about the mean H .

Thus :

3.

is formed, where i refers

.thto the i point of the given heat transfer distribution.

For a minimum:

where m = 0, 1, 2, 3

Therefore:

) - 2 * P
n

= 0

where ty are the expansion coefficients with dr = 0. and .!-' (u) are the Legendr^rn f TQ ) n\f-/

polynomials of the first kind and the n"" degree The \|/ coefficients are tnen

used as input data for the next programme stage.

Two distinct methods are used in the programme to obtain the required ex-

pansion coefficients:

2n + 1 l"
(1) Methods based on '̂  - —-^ / (̂a)p (u)du,

n 2 J n̂ ' >
— _L

with integral being evaluated by suitable numerical quadratures.

(2) Least Squares method.

2.1.1 Numerical quadrature methods

+1
r

To evaluate the integral / t(i-0 P.i(
i
hi)djj the following are used:

U tj

-1

(a) Simpson's "One-third rule",

(b) Linear interpolation with Gaussian quadrature,

(c) Lagrange four point interpolation with Gaussian quadrature.

The abscissae and weight factors used here for the 80th order Gaussian quad-

rature are those quoted by Davis and Rabinowitz (1958), and the Lagrange four point

interpolation formula can be found, for instance,, in Abramowitz and Stegun (1964).

2.1.2 Least Squares Method

The principle of Least Squares states that the sum of the squares of the

deviations should be a minimum. Thus from the expansion:

n i ^ i

This can be written concisely in matrix form as:

Mty = G ,

where M is a symmetric matrix with elements M = Z .
n, m .

and G are:

0 , P
1 O

t =

.) , and vectors

' J ^

The solution is then simply:

Individual Legendre polynomials are generated by a recurrence relation

quoted by Kizner (1966) which is well suited for computation:

0

with wn
= 1, w

n-1
- b ,.

n-l n



5.

for

for

w. =

•h

n-2. n-3.

21+1
i+1

= 0, 1,

0

i+2 '

To • I <1 - ̂  * | •

Because of the spherical symmetry involved, the solution

perturbation temperature is:

X — y TI /--, P ( M ̂- 41 AnP -C .A M- /

'

..,..(5;

The programmes are designed to give the coefficients 4r, also the average

value PL,, the input data being the heat transfer coefficient H associated with
0

the discrete values of (i .

2.2. Coefficients of the Temperature and ^irecs Series

The next programme stage is concerned with trie calculation of the temperature

and stress series coefficients, using the results from tne stage one programme.

Consider a homogeneous sphere of radius a, wit.: uniform internal heat genera-

tion per unit volume Q(r) = Q, and axisymmetric heat transfer variation, over the

surface as shown in Figure 1, Under steady state conditions and measuring tem-

perature T relative to coolant, the problem can be formulated, after introducing
r

the dimensionless parameter p= — , as;
cl

Let ¥(n), the dimensionless heat transfer coefficient distribution about

the mean, be expanded in terms of Legendre polynomials.

Thus:

^ P>) • (6)

Substituting (5) and (6) into (4) and applying the orthogonal properties

of Legendre polynomials, there results a set of infinite equations for the co-

efficients X . In matrix formulation this can be written:
n

n r

(2n+2r) .' \|r ̂
r n+2r

2n+2rn:(n+r)!r:

n
X = -fir ,

with

Let T

T *d

P

dT

0 ,

H a
T(l) = 0 , at p =

T + X; then the formulation may be separated as follows

V2 T
P

dT

o
+ S = 0

To(l) = 0

and V 2X
P

= 0

..-(I)

.-•(2)

..-(3)

where Blot No.
H ao

and S =•
2

is the heat source term.

The solution to (1) and (2) which gives the temperature associated with

the mean value of the heat transfer coefficient H , is simply:
O

where N is a diagonal matrix with N.. - (i-1) , 1 is a unit matrix, and vector

X and ty are defined as:

X — '\

X2 ¥2

and Q, denotes transpose of the matrix fl defined by:

0

o 2
3 .x

S» N

r- ^ 0
2n+l

n+1
2n+l

\
•\

x i

0:



o .

Truncation of this set of infinite equations and their solution yields the

coefficients X , which enable the computation of estimated temperatures and

stresses.

S Qa"
that they are computed for — - —g

The coefficients obtained from the programme are normalised in the sense

- I, The same normalisation is al^o applied

in the third stage programme when computing the dime-:sinless temperatures and

stresses.

Suitable subroutines are used to handle tf.e -:fccesse.r-y matrix operations.

The matrix inversion is don° "JY -, c : v i"- " _ •••• • • .

2.3 Evaluation of Temperature and Sire^^es^

The third stage programme is concerned WITH, the calculation of the temper-

ature and stresses at any point i ,9 of tne .sphere, based on the truncated co-

efficients X from the second stage.

The temperature at a point r,0 is given as:

T(r.0) = Z X (-)n P (cos 0) + T (r) ,v ' ' n n v a. n v c •

The perturbation stresses involved are .shown in Figure 4 and are obtained

using a formulation by Nowacki (1962) as,

v\ -w-\ * -V»-V» ' Vi * (
a
rr n n rr n nr.99 oar. n 99 r,

c. = E X (a.J , and a . = Z X (c .)
00 n n 00 n rS n n r9 n

The stress components associated with the individual X^ are:
j

(a ) = -6 n(n-l) (\-(~}?] (-)nP (u) ,rr n n V ry / va n

„

j

where:

= cos 0, u sin 0, ?'
ri dn

7.

- V)
n n2 + n + 1 + (2n+l)v

•y\

In the centre of the sphere (-) = 0 and the perturbation stresse

then:

rr

and

The total stresses are obtained by adding the components due to uniform

distribution of the mean heatx transfer H over the sphere surface.

Thus:

99

(0)0 = °r9

where:

N* -/

and ATQ is the temperature difference between the surface and the centre of

the sphere.

It is also useful to combine the effects of all the stress field components

by considering an equivalent stress derived from some type of failure criterion.

Hencky-von Mise's yield criterion of maximum shear strain energy (Finnie and Heller

1959) is used here, for which the equivalent stress is defined as:

i f f , . . ' . " I ? f. . . .1? f. . . - > 2a =

The first derivative P'(n) required in the calculation of the perturbation

stresses is obtained from:

P;(kO = (2n-l) P^iCn) + (2n-5) Pn_3(^) + (2n-9) Pn-5(^) + ,

which results simply from.the relation (Morse and Feshbach 1953):

-i-i-
2 I2
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In the programme the temperatures and stresses are calculated both in

dimensionless form and as actual magnitude values. The dimensiorJ.es s form
g

is for a normalised heat source of — - 1, the ueaiperaiures being expressed
6 o

4- V> o

where AT is the surface to centre temperature difference. This form is
o

useful when comparing various heat transfer distributions. The actual mag-

nitudes of temperatures and stresses are then calculated for a particular

power density which is read in as input data,

3. DESCRIPTION OF THE PROGRAMMES

The Fortran IV programmes and subroutines are listed in the Appendix.

In this section their application and the input and output arrangements are

discussed. The input for the first stage programmes depends on the method

used to obtain the required expansion coefficient of the heat transfer dis-

tribution, while the output is the same for all the programmes. It is as-

sumed that the distribution is given as a function of u = cos 0 and also that

the programme variable X = M. takes on values from 0 to 2 which correspond to

H = -1 to +1 . The expansion of the distribution in terms of Legendre poly-

nomials is calculated for a specified number of terms and then tested by

synthesising a distribution for a varied number of terms and comparing this

with the original distribution. Depending on the accuracy required, the

number of expansion coefficients is then selected to represent the distri-

bution in the next programme stage .

The programmes based on the four different methods of obtaining the

expansion are now detailed.

3.1 Simpson's "One-third Rule"

This programme is used when the distribution is a moderately fast varying

function, values of which are given for a medium to large number (say 150 to

220) of uniformly spaced values of the argument u,

Input;

N, L, M, MN, LN, DX

N = Number of values of the distribution

L = Number of coefficients required in the Legendre expansion

M = The initial number of the expansion 'coefficients used in generating

the synthetic distribution for comparison purposes

9.

MN = Number by which the synthetic distribution coefficients are

incremented

LN = The f-r.a1. r.untcr cf the syui.lit.-i.Ie distribution coefficients

DX = Step leneths

Values of the distribution at the relevant values of u, starting with

the value at u = -1 for 1 = 1 ,

3.2 Linear Interpolation with Gaussian Quadrature

If the distribution is a moderately fast varying function with values

given for a large number (say 220) of uniformly or non-uniformly spaced

values of the argument u, linear interpolation with Gaussian quadrature can

be used. This programme can also be used for a slowly varying function given

by a small number of values (say SO),

Input:

C(l),B(l),I - 1,40

The abscissae and weight factors for the 80th order Gaussian quadrature.

(Values are listed in the Appendix) .

N, L, M, MN, LN

The same as in Section 3.1.

Values of the variable X are given as X - 1 + ̂  , that is, the variable

X takes on values from 0 to 2, which correspond to a = -1 to + 1.

Y(l),I = 1,N

The same as Section 3.1,

3.3 Lagrange Four Point Interpolation with Gaussian Quadrature

This programme should be used mainly for a distribution which is a fast

varying function given by a medium to large number of values (say 150 to 220)

The values of the argument can be spaced either uniformly or non-uniformly .

This can also be used for slowly varying functions for any number of values

and its accuracy is superior to the methods used in Sections 3.1 and 3.2.

Input :

Identical to that of Section 3.2.
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3.4 Least Squares Method

This is most useful for distributions which are slow to medium fast varyir.g

functions with uniformly or non-uuiforiiil^ spaced values cf the argument ^. If a

onlv if the
^ v -~j --, >- - . ~-^~ -- ..--...,

argument values are uniformly spaced,

Input:

N, L, M, MN, LN

Identical to that in Section 3,2. There is no Quadrature,

3.5 Output Form for Stage One Programmej

This is the same for all the stage cr;e programmes av:d is given as follows

INPUT SPECIFICATION

N= L= M= MN= LN=

VALUE OF FUNCTION

Values of the original distribution are printed out,

ACTUAL LEG COF

A(l),I = 1,L

This gives the actual values of the expansion coefficients.

REDUCED LEG COF

Normalised coefficients obtained by dividing the actual values by tine value.

of the first coefficient.

AVERAGE VALUE OF HEAT TRANSFER = A(l)

This is the value of H .
o

EXPANSION COEFFICIENTS

Q,G(l), I = 2,L

This lists all the coefficients which may eventually be used as input data

for the stage two programme. The number to be used will depend on the

accuracy of the synthetic distribution.

COMPARISON OF SYNTHETIC FUNCTION

POLYNOMIAL DEGREE = M - 1

Highest, degree of the polynomial used in synthesising the distribution for
cOui(jd,rj.6ou purposes.

EXPANSION COEFFICIENTS NOW

Q,G(I),I = 2,M

The values and the number of the expansion coefficients, which, subject to

the accuracy test, are used as input data for the stap-o two r >'o>jra:u:!;o.

X COORD ACT FUNCT SYiYT FUNCT

EX FX TR

For values of the coordinate X(l) this gives Y(I) and the corresponding

values of the synthetic distribution. The accuracy of the print-out is

then visually compared and, if satisfactory, the number aud values of the

expansion coefficient selected for tbc next programme stage.

3.6 Coefficients of the Temperature and Stress_ Series

This programme enables the computation of the normalised temperature and

stress series coefficients, which are subsequently used in the stage three pro-

gramme to obtain the estimates of temperature and stresses. The normalisation
g

is effected by taking the heat source term as -^ = 1. The data used as input are

obtained from the results of the stage one programmes. Examination of the co-

-4efficients in the output, after discarding any with magnitude smaller than 10 ,

determines the input data for the stage three programme.

Input:

IDE

This serves as identification for a particular calculation.

N, NN, BIO

N -- order of matrices required to ensure a satisfactory convergence of

the truncated temperature and stress series coefficients. As a rule
N ̂  40.

NN = number of expansion coefficients from the stage one programmes which

give satisfactory accuracy in representing the original distribution.
NN = M.
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BIO =

H a
fv

Biot No. = ~rr~ j where H is tne average value of the heat transfer
K.

coefficient, which is again obtained from the stage one programmes.

T =

Values of Hie expansion coeff j -Oie i^s

FE(1) - 0.0, aiso FE(1) - 0,0 for M

pi j>gi aiuaic W J . L U

Output :

IDENTIFICATION IDE= ,

INPUT LEGENDRE COEFFICIENTS

N= NN= 3IC=-

EXPANSION COEFFICIENTS

A(I),I = 1,N

These coefficients are used as input fcr t'".e stage three programme after
-4

discarding any smaller than 10

3 . 7 Temperature and Thermal Stress in a 3 pi' ere

The last programme enables the temperature and stresses to be obtained

through the whole body of the sphere by varying radius r and angle 0, or simply

for a fixed radius and variable Q onl\ , Ir. order to be able to compare the

effects of various heat transfer distributions, the output is expressed both in

dimensionless form and as actual magnitude values, The dimensionless temperatures

are given as fractions of the surface temperature T0 associated with the average

value of the heat transfer coefficient H-> The dimensionless stresses are

expressed as
o

, with AT being the centre to surface -temperature drop

associated with H . Further, the dimensionless fcrms are calculated for the
g

same normalised heat source of 7- = _i_ as used in the stage two programme, Tr.e

actual magnitudes of the temperature and stresses are calculated for a particular

uniform heat generation Q, the input being in the form ~ .
ho

Input :

BIO, U, E, ALF, M

BIO = Biot No.

U = V, Poisson's ratio

E = Young's modulus

ALF = a, coefficient of thermal expansion

M = number of temperature and stress series coefficients from the

stage two programme,

Of* th? -f-Qrv^n-v^ •

........ f

two programme .

R, Q, DRX, RDX, KB. KG, KD

s series coefficients from the stage

R

Q

DRX

RDX

KB

- p, dimensionless radius, for the surface R = 1 0
Qa

KB

KG

KG

KD

KD

= ̂  , uniform heat generation term
Ho

= increments in angle 0 in degrees, usually 10°

= decrements in the radius R, usually 0.1

= 1, temperature and stress calculation is carried through the

whole or part of the sphere, depending on the value of R, in

decrements of RDX to R = 0.0

= 2, calculation one for a fixed value of R

= 1, calculation carried on for all values of 0 from 0° to 130°

with increments of DRX. If R = 1, that is, on the surface, the

increments are automatically taken as DRX/2.

= 2, this applies for a distribution symmetric about the equator,

that is, 9 varies only from 0° to 90°

= 1, only the dimensionless form is calculated

= 2, both the dimensionless form and the actual magnitudes are

calculated.

Output :

IDENTIFICATION

BIO= ,

COEFFICIENTS A

U= E= ALF- M=

The coefficients A read in as input are printed out as identification.

RAD=R, ANGLE-DG, Q = Q

This serves as a heading to identify the point r,0 of the sphere at which

the following temperatures and stresses are calculated. Q is the uniform

heat generation term. The notation used in describing the temperatures

and stresses is that detailed in Section 2.
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NORMALISED AND DIMENSIONLESS TEMPERATURES

These temperatures are calculated for the normalised heat, source term of
S
6 = " '

PERTUBATION T=T, DUE HO TU^I , TOTAL TOTOT £utfr HO _"W=1'0U;

RATIOS

This denotes temperatures expressed as fractions of the surface temper-

ature T due to H .
o o

PERTUBATION TH=T/Tr,(I) , DUE HO TLT-=T /T.f-u) TCI-L TX=(T+T., )/T,, (1)

ACTUAL TEMPERATURES

Actual magnitudes of temperatures due to uniform heat generation term Q,

PERTUBATION TP=T, DUE HO TUT=Trt, TOTAL T£=T-M_, SURF HO TUS=T^{1)0 \j 0'

NORMALISED DIMENSIONLESS STRESSES

These stresses are calculated for the normalised heat source term of

— = 1. and also expressed in the dimensic-less form -—r̂ r~b iL a Alo

PERTUBATION SA =
rr a

BOAT '
o

DUE UNIFORM HO SRU -
(a )rr o
EaAT

o

EaAT1
o

STU

, SD -
o

ECU AT

TOTAL ZSA -TOTAL ZSA - E«AT
o

ZSB -, ZSB - , ZSD -
o Ea AT

EQUIVALENT SIG =
a

Ea ATo

PERTB HO RATIOS XRR = 'rr a

(aT XTT =
99
'a) XFF =•

^rtSds a
ra

, XP.T - T̂ Y-(a)
o x yo

This gives the ratios of the perturbation stresses to the surface stresses

caused by H . This is of use when plotting the results.

ACTUAL MAGNITUDE OF STRESSES

The actual magnitude of stresses caused by the uniform heat generation

Q in the sphere.

PERTUBATION ZA = a , ZB = aQQ ZC = ZD -

DUE UNIFORM HO SRA = (a ) STA = (a)
0

= ̂ °00V ̂  = ZAD =

EQUIVALENT SAC = a

3-Q Sample of Typical Output

IDENTIFICATION BIO = 2.OOOU = 0.310E = 0.41800E + 08ALF = 0.10000E-04M=8

COEFFICIENTS A 0.32495E + 00 -0.97483E + 00 0.34324E -f 00 - 0.85341E - 01

0.1G6G8E - 01 - 0.26944E - 02 0.36940E - 03 - 0.44170E - 04

RAD = 1.000 ANGLE =0. Q = 75.00

NORMALISED AND DIMENSIONLESS TEMPERATURES

PERTUBATION T = - 0.37768E + OODUE HO TU = 0.10000E + 01

TOTAL TOT = 0.62232E + OOSURF HO TW = 0.10000E + 01

RATIOS

PERTUBATION TH = - 0.37768E •*• OODUE HO TUD = 0.10000E + 01

TOTAL TX = 0.62232E + 00

ACTUAL TEMPERATURES

PERTUBATION TP = - 0.94421E + 01DUE HO TUT = 0.25000E + 02

TOTAL TE = 0.15558E + 02SURF HO TUS = 0.25000E + 02

NORMALISED DIMENSIONLESS STRESSES

PERTUBATION SA = -0. SB = -0.26792E - 01SE = -0.26792E - 01SD = 0.

DUE UNIFORM HO SRU = 0. STU = 0.57971E + 00

TOTAL ZSA = -0. ZSB = 0.55292E + OOZSC = 0.55292E + OOZSD = 0.

EQUIVALENT SIG = 0.55292E + 00

PERTB HO RATIOSXRR = -0. XTT = -0.46216E - OIXFF = -0.46216E -OIXRT

ACTUAL MAGNITUDE OF STRESSES

PERTUBATION ZA = -0. ZB = -0.27997E + 03ZC = --0.27997E + 03ZD = 0.

DUE UNIFORM HO SRA = 0. STA = 0.60580E + 04

TOTAL ZAA - -0. ZAB = 0.57780E + 04ZAC = 0.57780E + 04ZAD = 0.

EQUIVALENT SAC = 057780E + 04

= 0.
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6. NOTATION

a

b

c

E

G

h(u)

H

H

I

k

M

n

N

Q

r

o

T

T

*
X

w

a

P

&

y,

n

n

V

p
a

o

radius of sphere

coefficient in recurrence relation for ? (\.\"\
n v' '

coefficient in recurrence relation for P (u)
nvr'

Young's modulus

vector in Least Squares Method

heat transfer coefficient variation about mean H.

heat transfer coefficient distribution

mean value of heat transfer coefficient

unit matrix; also denotes sum of squares of derivations

thermal conductivity

symmetric matrix in Least Squares Method

positive integer

diagonal matrix used in solution

n degree Legendre polynomial of the first kind

internal heat generation per unit volume

radius vector; also denotes positive integer

Qa2heat source term -^—
K.

temperature measured relative to coolant

temperature component due to mean value of heat transfer H

coordinate axes

temperature component due to h(u)

variable in recurrence relation for P (u)

coefficient of thermal expansion
H a

Biot number -°-—
K

stress coefficient associated with state n
•

angles of spherical coordinate system

vector used in solution

expansion coefficient of truncated series associated with P (u)

alternative independent variable, |_L = cos 0

variable in stress formulation, p - sin 0

Poisson's ratio
r

dimensionless radius vector, p = —
Q*

stress components as defined in Figure 4



18.

equivalent total stress

vector used in solution

normalised heat transfer coefficient variation ̂ (u) =
h(u)

o

n

a>

coefficient in expansion of «/(u) associated with P (u)
Li

E G1
thermoelastic coefficient;, cu = -„.- , N -

matrix used in solution

Subscripts

due to Ho

n

t

69,00, rr, rd

associated with X
r,

total

as defined in Figure 4 for stress compor.er.ts

_AND_SUBROU TINES



APPENDIX ?. LISTING OF FORTRAN IV PROGRAMMES AND SUBROUTINES

EXPANSION Oc HEAT TRANSFER IN TERMS OF LEGENDRE POLYNOMIALS
SAMPSONS" ONE: THIRD
DIMENSION YI 220) »A(50) »ct50)
" CAD ! 5 « i J N » L » M * Mi\ » LN « DX
FORMAT(5I4»F7.3)

2 FORMAT UOF7. 3)
K=fN-l)/2
DO 10 I=1»L

SUM-000
X s l o O

CALL POL?XMN»BN9X)

X=-1.0
CALL POL«XMN>BN»X)
SUM»SUM-«-XMN*Y( D
DO 11 J=2»K»2

25 CALL POL(XMN»6N*X>

IFCX.LT,0.0)GO TO 11
x=-x
MA-J
GO TO 25

11 CONTINUE
KN-K-1
DO 12 J=3»KN»2

26 CALL POL«XMN9BN»X)
SUM = SUM-f2»*XMN*YCMAJ
IFfX.LT.O»0|GO TO 12

12
GO TO 26
CONTINUE
X^O.O
CALL POL(XMN»BN»XJ

£ 10 A( I ) - (2»*BN+1«0)*SUM*DX/6«0
i DO 70 I=1»L
"$ 70 G U ) = A ( I ) / A ( i )
:| DO 35 1 = 1 9N
I TUM-1
I 35 XU(I )=TU*DX
I WRITEC69110 )
§110 FORMAT«iX»19HINPUT SPECIFICATION

W R I T E ( 6 9 l l l ) N 9 L 9 M 9 M N 9 L N 9 D X

W R l T E ( 6 > 6 6 ) ( X U ( I ) » Y { I) »



DAGE

66

45

72

205

206

207

82
150

151

208

209

152

FORMATdX,i7HVALUE OF FUNCT iON/dX* 10E12.4) "
W R I T E ( 6 » 4 5 ) < A d ) » I = l fL)
FORMATdX,i4HACTUAL LEG COP/ IIX , lOEi £» 0 5 i >
W R l T E ( 6 f 7 2 J < G d > » i * i , L > " ^°^'
FORMATdX,15HREDUCED LEG COF/dX, lGE13o5 > »
W R I T E v ' t > » 2 0 5 ) A I i )
FORMAT dXOlHAVERAGE VALUE OF HEAT TRANSFEREES,5
W R I T E ( 6 » 2 0 6 )
FORMAT(1X,22HESPANSION COEFFICIENTS!
Q=0.0

W R l T E ( 6 » 2 0 7 ) Q » U G d ) »I = 2 » L )

FUNCTION)

W R I T E ( 6 » 8 2 )
FORMATdX»32HCOMPARfSON OF SYNTHETIC
IJ=M-1
WRITE(6»151)IJ
FORMATt1X»18HPOLYNOMIAL DEGREE-I4J
WRITE(6»208J
FORMAT(lX,26HESPANSiON COEFFICIENTS NOW)
WRITE(6»209)Q»(Gd ) »i=2»M)
FORMAT(lX,lO£i3e5/(lX9IOE1305J)
WRITE(6»152)
FORMAT(1X,13H XCOORD »13H ACT FUNCT
is it 913H SYNT FUNCT )

156 EX=XU(K)
XY s EX-1.0
TR=0.0
DO 153 I=1»M
BN=I-1
CALL POL(HA»BN>XY)

153 TR = TR-fHA*A(IJ
FX^Y(K)
WRITE(6»154)EX»FX»TR

154 FORMAT(1X»3E13«.5)
IF(K.EQ.N)GO TO 155

GO TO 156
155 IF(M.GE.LN)GO TO 42

GO TO 150
END

INCLUDING THE FOLLOWING SUBROUTINES
SUBROUTINE POL

PAGE 3

FXPANSION
UNEAR IN
D7M£NSiON

OF HEAT
ERPOLATION

TRANSFER IN TERMS OF LEGENDRE POLYNOMIALS
WITH GAUSSIAN QUADRATURE

» r > * 80 } »A J 50) >C « 50) »2 ( 220)

11 t-UKMH » ^M-r iu • i j
42 K £ A D ( 5 » 1 5 N » L » M » M N » L N
1 FORMAT(514!

READ<5»2)(XCi)T!sl»N
READ<5»2) (Yd) »I = 1»N

2 FORMAH10F7.3)
DO 12 I=l»40

12
cm=-cm
6 < K ) 5 S B < I )
DO 3 I = 1 » N

3 Z(I)=X( D-

10 Jal

6 U=Z( J)-C( I)
IF<U.EQ.OeO)GO
IF(U.GT.O.O)GO

4

8

9

TO
TO

GO TO 6
D d ) -Y ( J )
GO T08
V=iZ(J)-Z< J-li
R-^YC J)-Y( J-l)
DtI)=Y(J-lj+(V-U
IFl I.EQ.SOjGO TO
I-H-1
GO T010
DO 21 I«1»L
BN-I-i
SU-0.0
DO 22 J=l

4
5

22
21

70

110

111

66

45

72

205

CALL POL(XMN»BN»XXj
SU = SU-|.XMN#D(J)*B<J)
Ad) = <2.*BN+l«0>*SU/2»0
DO 70 I=1»L
G d ) = A ( I ) / A « l )
WRITE(6»110)
FORMAT (1X»19HINPUT SPECIFICATION^
WRlTE(6»lll)NtL»M»MN»LN
FORMAT(lXf2HN=I4t2HL=I4f2HM=I4»3HMNsI4»3HLN-^l4,
WRITE(6»66) (Xd)»Y(I.)»I = l » N )
FORMAT (1X»17HVALUE OF FUNCTION/ ( lX> IOE12.4D
WRITE(6»45) (AC I ) »I = 1»U
FORMAT ( IX »14HACTUAL LEG COF/ dX»lOE13»5 ) )
W R l T E ( 6 » 7 2 ) < G d ) » I s l » U
FORMAKiXflSKREDUCED LEG COF/ <lX?lOE13.5 ) )
WRITE(6»205)A(1)
FORMAT (1X.31HAOERAGE VALUE OF HEAT TRANSFER-E13.5)
WR!TE(6»206)
FORMATdXt22HEXPANSlON COEFFICIENTS;



PAGE 5

w-O.Q

WRITE < 6.20? > Q » U G d > » 1=2 »U
207 FORMAT ( i Y f ftt-« - - . . . v -,

UiJ*-'''1A'l0tl

PAGE

^JflX'32HCOMPARlSON OF SYNTHETIC

WRITE(6.I51)IJ
FORMAT* IX, I8HPOLYNOMIAL DEGREE*!**
WRITE (6*208)

1 6 E P N S l O N

• 5/(IX-

XCOORD
WRITE(6*152>
FORMAT!1*»I3H

82
150

151

208

209

152

156
XY = EX-l.O
TR^O.O
DO 153 IsltM

153

WRlTE(6»154)EXtFX»TR
154 FORMATClX,3E13*5l)

IF(K.EQ*N|GO TO 155
K-K>1
GO TO 156

155 !F'M.GE.LN»GO TO 42

>I3H AC

CALL POL(HA»BN*XY>

GO TO 150
END

INCLUDING THE FOLLOWING SUBROUTINES
SUBROUTINE POL

EXPANSION OF HEAT TRANSFER IN TERMS OF LEGENDRE POLYNOMIALS
. » ,- n A M r- C CT\1 ICJ ni~\t MT Y MTCDDrvi ftTV^M \.l \ T t » *• * I t c f ~ *. M /^i i . ~ «. » ~r , ,r~. —IAGRAP4GE FOUR POINT INTERPOLATION W!̂ 'H GAUSSIAN QUADRATURE

O > »n' aO ) »X( HO} »V t220; >Z ( ̂20 > »A l 50; *6« 50 J >Di80 ,'
ID»6U )t 1=1*40 j

il PORMATiitf 10.7)

O«MAT(5I4J

R£AD(5»2i (Y(n
2 FORMATJ10F7.3)

DO 12 1=1*40

(S

Ci I )=•-(!( I )
12 8 ^ K J - B C 1 )

DO 3 I~1»N
3 zd»=x( n-i.o

10 Js

6 Us
IF
IFf
J-
GO

4 DC
GO

«U.EQ.O.OJGO TO 4
U.GT.O.OSGO TO 5

j-fi
TO 6

n-Y( j )
TO 8

« ( J - 2 5 i « L E » 0 > G O TO
« < J-H > .GT.N)BO TO
= YU-2»AO

Xo=Z(J-2)

GO TO 255

J+Z( J-i )-
J-H

GO TO 255
202 A3=Y(J-l>

X3=ZCJ)+Z
AO-YIJ-2 }
Xo=sZ( J--2)

255

J-lv

T=C(IJ

Vs ( T-XI ) * ( T-X24-* ( T-X3 ) *AO/ ( C XO-Xi ) «• t XO-X2 ) * ( XO^X3 ) 1
(Xl-XO)*(Xl-X2 )*(X1-X3 ) )
< X2-XO)*( X2~Xi )*( X2-X3 ) )

VsV^(T-XO)*(T-XU*(T-X2)*A3/< ( X3^XO)*( X3-X1 ) *( X3-X2 ) )
Dd)=V

8 IFd.EQ.80)GO TO 9
1 = 14-1

GO TO 10
9 DO 21 I=1»L

•'=2 J



PAGE 6 INCLUDING THE FOLLOWING SUBROUTINES
SUBROUTINE POL

22
21

70

110

111

66

45

72

205

206

207

82
150

151

208

209

152

156

SU^O.O
DO 22 J=1*SO
xx^t < .'?
CALL POL(XMN»BN*XX?

J ) *8 (J )

DO 70 I=ltL
GU)=A<n/A<il!
WRITE(6»I10$
FORMAT ( IX ,19HINPUT SPECIFICATION*
WRITE(6»111)N»L»M9MN«LN
FORMAT < iX »2HNs I 4 » 2HLS 1 4 > 2HM~ 1 4 »3HMN = ! 4 93HLNs 1 4

6»66)(X(i>tY(n»r = i?Nj)
FORMAT* IX. I7HVALUE OF FUNCTION/ i 1X»10E12«4> J
WRlTE(6>45) U(I » >i = l*L>
FORMAT «iX»i4HACTUAL LEG COF/ d X ? iOE13«5
WRlTE(6»72H tG(I J » i = l » L »
FORMAT(lX»i5HREDUcED LEG COF/ ( iX« iOEl3«5

FORMAT { IX .31HAVERAGE VALUE OF HEAT TRANSFER-E13.5 >
WRITE(6»206J
FORMATt 1X.22HEXPANSION COEFFICIENTS)
QsO.O
WRlTE(6»207)Qt(G( I) »I*2«L»
FORMAT C IX, 10E13.5/C IX >10£13»5^ )
WR!TE(6»82J
FORMAT(1X,32HCKMPARISON OF SYNTHETIC FUNCTION)
IJ=M~1
WRlTE«6» l51H r J
FORMAT? 1X»18HPOLYNOMI AL DEGREEsJ4}

'
FORMAT dXt26HEXPANSrON COEFFICIENTS NOWj
WRIT£<6»209)Q»(G(I) 9ls2»M»
FORMAT«lX»iO£i3,5/(iX»lOE13.5) I
WRITE(6»I52)
FORMAT? 1X.13H XCOORD »13H ACT FUNCT ,13H SYNT FUNCT
K»l

XY * EX-1,0
TR=0.0
DO 153 1=1, M
BN-I-1
CALL POL«HA»ONTXY)

153

154 FORMAT«lXf3E13«5j
IFdC.EQ.NJGQ TO 155

GO TO 156
155 I f ( M « G E . L N ) G O TO 42

GO TO 150
END

n

0*9942275
0.9828485
0.96548bO
0.9422427
0.9132631
0.8787225
0.8388314
0*7938327
0* .-̂ 0002
0*68963"76
0.6310757
0,5686712
0*5028041
0.^338753
0*3623047
0,2885280
0,2129945
0*1361640

ABSCISSAS AND WE
0,0011449 0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0.0041803
0.0071929
0.0i0l6i7
0.0130687
0.0158961
0.0186268
0.0212440
0S0237318
0.0260752
0.0282598
0.0302723
0.0321004
0.0337332
0.0351605
0.0363737
0.0373654
0.0381297
0.0386617
0,0359533 0

IGHTS OF GAUSSIAN QUADRATURE c c i ;
.9976493 0.0025635
.9892913 0*0056909
.9749091 0.0086839
.9545907 0.0116241
.9284598 0,0144935
.8966755 0,0172746
.8594314 0.0199506
.8169541 0.0225050
.7695024 0.0249225
.7173651 0.0271882
.6608598 0.0292883
.6003306 0.0312101
.5361459 0.0329419
.4686966 0.034473;
.3983934 0.03579̂ .
«3256643 0.03689?,
,,2509523 0.0377763
.1747122 0,0384249
.0974083 0,0388396
.0195113 0,0390178

>BU
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EXPANSION OF HEAT TRANSFER IN TERMS OF LEGENDRE POLYNOMIALS
LEAST SQUARES METHOD

DIMENSION P<50T220j»X(220j »Y{220)»D(50}«»Zi(50950j»Z(50*50j«
1A(50»G(50)

*2 READ<5«I)N9L»MTMNjLN
1 FORMAT*5141

SL=AD'5»Z/ v'Xi i ; i l=l»N)
READ(5»2) (Yd ) » I = l » N J

2 FORMATUOF7.3)
DO 84 1 = 1 »L

PAGE PAGE 9

DO 85 JsltN
XY=X(J)~1.0
CALL POL(XM*3N»XY)

85 P( I»J)sXM
84 CONTINUE

DO 86 I=1»L
D(U=0.0
DO 87 K=1»N

87 D(n=D(I)+Y(
DO 89 J~I»L
Z i I » J ) B O . O

DO 88 K=ltN
88 2(i,J)=2( I.J
89 2(j,l)a2{I»J,
86 CONTINUE

CALL BORD(Zl»ZTL)
CALL COL(A»2l,D»L)
DO 70 I-1,L

70 6cr)=A(r)/A<i)
WRITE(6»110j

110 FORMAT(lX,l9HrNPUT SPECIFICATION)
WR J TE(6 »111)N tL »M »MN » LN

111 FORMATCiX»2HN-I492HLsI4»2HM-»I4»3HMN-I4?3HLN=I4 j
WRITE(6>66)(X(I)fY(r)»I«1»N)

66 FORMAT(1X»17HVALUE OF FUNCTION/(1X910E12o4M
WRlTE(6»45J(A(T»«Tsi.< '.si:̂ ?̂:̂,;- — xoE1,.S))72 ™;:^?u^CEGccr—^».»»

205 £RS^rVERAGE VAIUE or rt£^ T«ANsrER.E13.5
206 ^^T '1X '22HEXPAN3;OW CO^TI-Y^rS,

W R l T E I e . a O T j Q . S G ! . ; , ; , ^

207 | -ORMAT( lX, lOEl3 .5 / f iX . ;o?> 3 ..
W R t T E ! 6 » 8 2 ( -" — --.-,:

150 ™£'».32Hc0MPARtSOH OF SYNTHEUc FONCT^N,

WRITE(6.151)U

W?TEU^o;?HPOLVNOMI*L •>««£-!*,

208 FORMAT(IX»26HEXPANSION COEFFICIENTS NOWi
WRlTE(6»209)Q»UG(I)»Is2»Mi

209 FORMAT(iX»lOEi3.5/(iX»iOE13.5>i

WRITE(6»I52)
152 FORMAT «1X»13H XCOORD »13H ACT FUNCT ,13H SYNT FUNCT

XY » EX-1,0
TR=0.0
DO 153 I=1»M

CALL POL(HA»BNTXY>
153 TR=TR+-HA*A(I)

FX=Y(K)
WRlTE«6»154)EX,rX»TR

154 FORMAT(1X»3E13.5)
IF<K.EQ.N;'GO TO 155

GO TO 156
155 IF«M.GE.LN)GO TO 42

GO TO 150
END

INCLUDING THE FOLLOWING SUBROUTINES
SUBROUTINE POL
SUBROUTINE BOft,:,
SUBROUTINE CO,,



PAGE 10
COEFFICIENTS
DIMENSION FE
TW(50»50> »A<
READ! 5 »M IDE
FORMAT (14)

PAGE JL i

Q-f THE TEMPERATURE AND
50)»WR(50),VG(50»50)

STRESS SERIES
i 50 ,50 ) ,WG( 50 *50 ) » 6 FORMAT<lX«5E12.4/(lX»5E12«4n

WR|TE(6»251i
l FORMAT dX,22HEXPANSlON COEFFICIENTS/ i. 1X»5E13, 5)

2 FORMAT (5E12. 4)
DO 105 I-1»NN
Jss 1

11=1-1
WR( I)sO.O

102 JJ-J^l

IF(K.GT.NN)GO TO 105
CALL WAUW»H»JJ»

IFU.EQ.NNJGO TO
JaJ+1

GO TO 102
105 CONTINUE

20 FORMAT(lX,5E13.5/(lX»5El3.5n
GO TO 25
END

INCLUDING THE FOLLOWING SUBROUTINES
SUBROUTINE TRP
SUBROUTINE SC
SUBROUTINE ADD
SUBROUTINE OMG
SUBROUTINE EQW
SUBROUTINE PWR
SUBROUTINE WA
SUBROUTINE UN
SUBROUTINE BORD
SUBROUTINE CO'.

WRR=WR(t)
CALL UN(22»N»L)
CALL EQW(TW»ZZ,N»
CALL ScCWGtZZ,WRR,N)
CALL EQWJZZ,WG»N)
IF(I.EO.NN>GO TO lO?
I«2

106 WRR=WRU)
CALL OMG(ZZ»N)
CALL TRPCVG^ZZjNj
CALL PWR(ZZ»Ve,TW»N)
CALL EQW(TW»ZZ»N)
CALL SC<VG»ZZ,SRR»N>
CALL ADD(ZZ»VG»WG»N.
IFU.EQ«NN)60 TO iO"-
CALL EQW(WGtZZ»Ni
I -I-M
GO TO 106
CALL UN(VG»N,L>
CALL ADD(TW»VG»ZZ,Ni
CALL SCCZZ,TW,810»N)
L = 2
CALL UN«WG»N»L)
CALL ADD(VG»WG»ZZ,NJ
CALL BORDCZZtV-j-jN?

107

CALL SC«VG»ZZ,SA»N)
CALL COL«A»VG,FE»N)
WRITE«6»35)IDE»N»NN»BIO
FORMAT(lX,l5HlDENTlFICATJON«l4»2HN=I4»3HNNsI4,4HBIO-F5.WRITE(6»250>

250 FORMAT(1X,27HINPUT LEGENDRE COEFFICIENTS)

35
2)



TEMPERATURE AND THERMAL STRESS IN SPHERE
DIMENSiON A<50>,SRR(50J,

22 READC5»i)BlO»UTE»ALF,M
1 FORMAT(2F6.3»2E13.59I4J

PAGE 12

2 FORMAT(5E13.5)

6 FORMATUF8. 3.3131
WRITE <&»i50)

150 FORMAT { IX, i4HrDENTlFrcATjf ON >
WRlT£(6»81]iBfO*U,E»ALF,M

82 FORMAT(iX,i4HCOEFFICIENTS
PFE-3. 14159265

TW=2./BIO
X = l.O
DG=0.0
rF«R-O.Ol).LE»0..

RB-I.-RK
53 T^O.O

RA=I.O
DO 7 1 = 1,M
BN-I-l
CALL POL(XMN,BN»X>

7 RA-RA*R
TU»1.0+2./BIO-R**2

TX^TOT/TW
TUD=TU/TW
TH-T/TW

8

61 FORMATC1X.15HPERTUBAT

63 FORMAT( iX ,6HRAT|OSj
W R l T E ( 6 , 6 4 ) T H , T U D » T X

IFCKO.EQ.DGO To
TUT«QU#TU

TUS«QU*TW

TO 53

HO

WR!TEC6»271)

271 FORMAT C IX, I9HACTUAL TEMPERATURES;

PAGE 13

WRiTE(6»272)TP,TUTfTE»TUS
FORMAT(1X,15HPERTUBAT!ON TP^E13.5 , 12HDUE HO TUT=E13.5/
11X»15HTOTAI. TE-E13*5,12HSURF HO TU«i = E13.5'•
XD-?:.-***2}**0«5
IF«(R-0.01),LE«0.0)GO TQ50
DO li 1-1»M

CALL POL(XA»AB»X)
RD=R**AB
SRRCi)=-DEN*AB*CAB-I.>*RB*RD*XA
CALL D E R U B * X » K D J

S T T C I )=DEN*RD*( AB*CAB-i-2.
SpF ( I ) s-DEN*RD* C AB* ( 2 .*AB-^RB ) *XA-ZU i

ii SRT! i )=DEN#CAB^I«)*RB*RD*XD*PD
SRRT^O.O
S T T F s O . O
SFFT=O.O
SRTT=.O.O
DO 13 I=1»M
SRRT=SRRT- fA<I )*SRR( I )

I ) *STT( I )

13

50

I ) *SRT( f
GO TO 51

DEN=G/AZ
CALL P O L ( X A » A B » X )
CALL D E R C A B » X , P D 5
SRRT=2**DEN*XA*A<3)

SpFT = DEN#(2 . *XA-X*PDI *A(3 )

51 W=E*ALF
SA-SRRT/W
SB=STTT/W
SE=SFFT/W
SD=SRTT/W
WRITEC6»273J

!73 FORMAT(1X,33HNORMALISED D1MENSIONLESS STRESSES,
WRITE(6»72)SA,SB,SE,SD
FORMAT(1X,15HPERTUBAT!ON 4HSA »E13*5*4HSB ~E13.5»4HSE

=E13,5)
72

SW=2./(5.*(1,-U))
SV=«2.*E*ALF)/(5.*(l.-U))
SR=SV*(RP-l.)
ST=SV*(2.*RPrl,)
SRU=SR/W
STU-ST/W
WRITE(6»70)SRU,STU

70 FORMATCIX,15HDUE UNIFORM HO 4HSRU=E13.5»4HSTU=E13*5)
ZRRT=SRRT^SR

~E1 '3 .5»
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ZTTT=STTT+ST
ZFFT=SFFT+ST
ZSA=ZRRT/W
Z S B = £ T T T / W
ZSOZFFT/W

W R I T E ( 6 » 4 0 ) Z S A » Z S B » Z S C » Z S D
40 FORMAT(1X»15HTOTAL

14HZSD=E13.5)
4HZSA=E13.594HZSB*E13.5»4HZSC~E13.5»

DRR-ZRRT-SUM

DFF-ZFFT-SUM
DRT^SRTT

4HSIofX"

SIGM=(SIGM+3.*DRT**2)**0.5
SIG=SIGM/W
WRITE(6»135)SIG

135 FORMAT(1X,15HEQUIVALENT
XRR^SA/SW
XTT=S6/SW
XFF=SE/SW
XRTsSD/SW
WRITE(6*89)XRR,XTT»XFF*XRT

89 FORMAT!1X»15HPERTB HO RATIOS4HXRR=£13.5
14HXRT=E13.5)
IF(KD«EQ.1)GO TO 261

275 FORMAT ( IX »28HACTUAL MAGNITUDE OF STRESSES)
ZA=SRRT#QU

ZC=SFFT*QU
ZD=SRTT*OU

280 FORMAT(lX»i5HPCRTUBAT10N
=E13*5,

4HZA ^ =E13.5*4HZC

STA~ST*QU
WRITE(6»281)SRA»STA

281 FORMAT(1X»15HDUE UNIFORM HO
ZAA=ZRRT*QU
ZAB=ZTTT*QU
ZAC-ZFFT*QU
ZAD*SRTT*QU

»4HSTA*E13.5

282 FORMAT(1X»15HTOTAL
14HZAD=E13.5)

13.5?4HZAB-E13« 5 »4HZAC"E13 . 5 9

WR1TEC6»283)SAC
283 FORMATC1X»15HEQUIVALENT
261 IF( (X-M.OUEQ.O.O)GO TO 54

DU=DRX
!F(R.EQ.1.0)DU3DRX/2*0
DG=DG-fDU
1F«DG«GT,180.0)GO TO 54
ARC=PFE*DG/180*

4HSAOE13.5

?&r.i

IFiDG.GE. 90.5)60 TO 32
GO TO 53
IF?KC.EQ*2>GO T0 5«V
I p ' DG »GE . 179 ,999 i X=-—\ .0
GO TO 53

->V 1 S .«, ̂  *. .
i i l U ^ C - J

'
IFnR4-0.05>.LE*0.0»GO TO 22
GO TO 55
END

INCLUDING THE FOLLOWING SUBROUTINES
SUBROUTINE POL
SUBROUTINE DER



LTSTING OF SUBROUTINES

SUBROUTINE POLCQ»BNs>X>
IF<BN.GE.2.Q)GO To 4
IF(BN.£0.0.0)60 TO 3

PAGE

GO TO 2
4 N=BIM~1.0

AN=N
B=(2.*AN-H.O)/(AN+-1.0)

AN=N

B-«2.*AN-n.O)/(ANi-1.0)

IF(N»EQ.O)GO TO 2

GO TO I
3 W3=i.o
2 Q=W3

RETURN
END

SUBROUTINE DER(AN,X»RE
IFUN.GT. 1.01)60 TO i

IF(AN.LE.O.Oi) RE=0.0
GO TO 4

3 CALL POL(XMN»AE»Xj
RE=RE-»-AD*XMN

TO 4
AD=AD-4.0
AE-AE-2.0
GO TO 3

4 RETURN
END

SUBROUTINE TRP( H A»CH»N)
DIMENSION H A < 5 0 , 5 0 ) , C H ( 5 0 , 5 0 )
DO 1 1>1»N
DO 2 J=l»N

2 HA(I»J)=CH( J»l)
1 CONTINUE

RETURN
END

SUBROUTINE SC(FH.GZ.BOfN)
DIMENSION GH(50,50)>GZ(50,50t
DO 1 1*1, N

DO 2 J=lfN
2 GHd » J > =
I CONTINUE

SUBROUTINE ADD<HD*HE»HG»N)
DIMENSION HD(50,50)»HE(50»50)
DO 1 I=1»N
DO 2 J-l.N

2 HDd»J)=HE(IfJ)+HGdfJ)
1 CONTINUE

RETURN
END

SUBROUTINE OMGUYR»N)
DIMENSION YR(50»50)
DO 1 I-lfN
DO 2 J=lfN

2 YR(I»Jj=0.0
I CONTINUE
M«N-1
DO 3 1=1fM
AN=I-1
AM=I

3 YRd + lf n=AM/<2«*AM+l,0)
RETURN
END

SUBROUTINE EQW(AXtATAfN)
DIMENSION AXt50f50)*ATA(50f50>
DO 1 I-I«N
DO 2 J=1*N

2 A X ( i f J j i A T A l I f J t
1 CONTINUE

RETURN
END

SUBROUTINE PWRUF»G»H»N)
DIMENSION FC50f50)fG(50f50)fH(50f50)
K-l

4 DO 1 I-lfN
F C K » I )aO.O
DO 2 J=lfN

2 F<KfI)=F(KfI)++(KfJ)*H(Jf I)
1 CONTINUE

IFtK«EQ,N)GO TO 3
K^K-J-1
GO TO 4

3 RETURN
END

SUBROUTINE WA(W,NN»NR)
ZN-NN
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•» •*.

4 IF^L.EQ.l)BN-ZN
IF£L.EQo2)BN-ZR

IF<L.EQ.4iBN=2.*ZN+2.*ZR
r\ -- -

1. / • V.J

GO TO 3

-̂ j.

CN---BN
7 '- iv - " >-; - PC. '•_ ' - - ' .L I *•-

P c. - • v . •'

IF* <CN Ie0i ; .LtioO»0,GO TO 3
GO TO 2

3 IF<L»EQ*1)Q1=FN

IF(L.LT»5JGO TO 4

IF(M.GT.O) GO TO 7
05=1.0
GO TO 8

8 W=Q4/CQ1*Q2*Q3MQ5J

IF((ZR~CX).LEoOoOjGO TO 5
W=-W

5 RETURN
END

SUBROUTINE UNCUZ»N»L)
DIMENSION UZC50950)
DO 1 I=1»N
DO 2 J^19N

1 CONTINUE
IFCL.EQ.l JGO TO 4
DO 3 I=1»N

3 t«Z( Ifl)sl-l
GO TO 6

4 DO 5 I=liN
5 UZ( I » I )si.O
6 RETURN

END

SUBROUTINE COLUDA*HB»CE»N )
DIMENSION DA(50) sHB(50»50) >CE(50)
DO 1 I=1»N
DA< I)=0.0
DO 2 J-1»N

2 DA<I)=DA( I)+HBUI»J)*CE<J)
1 CONTINUE

RETURN
END

SUBROUTINE BORD(H»W,M)
DIMENSION W(50»50) >H(50»50) ,R(50>50) >S(50»50)

H(2»l)=-X*H(x»l)
X=W(lf2)/W(l»l)
H(2t2)=1.0/(W(2»2)-W(2»l)*X)

1 K=N

DO 2 1-1»K
R(N»I )=0.0
S( I»N)=0.0
DO 2 J=1»K
R ( N » I ) =R < N » I ) -W < N » J ) *H ( J » I )
S( ItN)sS( I,N)-+( I»J)*W( J»N)
ALN=0.0
DO 3 I=1»K
ALN=ALN+W(I »N)*R(N»I )
ALN=ALN+W(N»N)
X=1.0/ALN
DO 4 I=1»K
H(I»N)=S( I»N)*X
H(N»I)=R<N»I)*X
DO 4 J=1>K
H(1»J)=H( I»J)+S(I»N)*R(N»J)*X
H(N»N)=X
IF(N.LT.M)GO T- 1
RETURN
END
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FIGURE 1. AXIALLY SYMMETRIC HEAT TRANSFER VARIATION OVER
SURFACE OF A SPHERE
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FIGURE 2. TYPICAL HL*T TRANSFER DISTRIBUTION AS A FUNCTION OF 0
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