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ABSTRACT

A description is given of a method suitable for the automatic solution of certain optimum
design problems on a digital computer for cases where the number of constraints imposed on the
design is not greater than the number of design variables. The problem is transfotmed to one
requiring the minimisation or maximisation of an unconstrained function, for which a gradient
method is used.
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INTRODUCTION

Digital computérs are currently being used extensively to relieve the design engineer of
much of the tedious computation associated with conventiona) methods of engineering design. There
are however distinct advantages to be gained by using direct methods for the solution of optimum .
design problems to which some attention has been given in recent years (Dennis, Nease, Saunders
1959; Brown 1959; Dickinson 1958). The method described herein is a direct method, suitable for
the automatic solution on a digital computer of certainoptimum design problems where the number of
constraints imposed on the design is not greater than the number of design variables. It is hoped
that the method will find use in reactor core design and reactor system optimisation studies as well
as other engineering design problems, '

. In the type of optimum design problem with which this teport is concerned, values of the design
variables must be found which make some criterion function a maximum or minimum and simultaneously
satisfy constraints imposed by the design specifications or physical limitations of the system, The
conventional approach is the trial ~ and ~ error process where guesses ate made of the values of the
design variables, performance parameters are computed, and the performance is compared with the
specifications, If the design does not satisfy the specifications the design variables are changed
and the calculation repeated until finally an acceptable design, one which meets the specifications,
is produced. For an optimum design where the system has to be optimised with respect to some
criterion, the above procedure is repeated until a series of acceptable designs is produced and the
best of these is selected as. the optimum design., The conventional method suffers from the disadvan—
tage that it relies heavily on the insight and experience of the designer inthe choice of changes to
make to the design variables. It is not readily applicable to the optimum design of new or different
systems with which the designer has had little or no experience, and the successful solution of large
problems is severely handicapped by the fact that human insight becomes less dependable as the
number of variables increases,

A direce method for the solution of the optimum design ptoblem is one which relies on a mathe—
matical technique rather than an intuitive one to find the values of the design variables corresponding
to a minimum or maximum of the criterion function in a region where the constraints are satisfied.

When a direct method is programmed for a digital computer it becomes automatic and no intervention
or decision making is required of the designer once the program has been initiated. There is no
difficulty in applying the technique to entirely different systems, and the resulting values of the
design variables are known to correspond to the minimum (or maximum) of the criterion function and
to satisfy the constraints. In addition, the number of design variables which can be handled is
limited only by the capacity of the computer.

THEORY
The method deals with optimum design problems which may be formulated in the following way:
minimise G s og(Xy,Xg, e, xd-) (1)
subject to the constralnts
Bi (x4, Xgy vvue, xg) £ G; , (2)
i = 1,2, ceiuyn

whete n < d and the constraints are independent of one another. The functions g and g; are assumed
to be continuous with continuous detivatives and may be non linear. Although the problem is formu—
lated as one of minimisation subject to constraints of the type given by (2), it should be noted that
maximising instead of minimising, and replacement of < by 2 in the inequalities, present no further
difficulties,

X1,Xg, -uie , %g Are the physical variables of the system which the designer may vary, The
constraints either specify performance or ensure that the final design is physically realisable, The
functions .8j ate design formulae giving performance parameters in terms of the design variables and
the constants Cj are fixed by the specifications, The minimisation {or maximisation)of the criterion
function G = g(x4, X5, .... , X4 ) corresponds to stating that the design should be optimum with respect
to some criterion e.g. cost, weight, volume, efficienf:y. ‘ '
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The inequalities are firstly converted to equalities by the introduction of slack variables

%4, Zg, +eer » Zn Which are squared so that they may assume any value, positive or negative, without
violating (2).

Hence

Bj (x4, Xgy eee s xg) 4 z; = Ci . 3)

j= 1,2, ceee y

There are now d design variables and n slack variables, d +n variables in all, They are, however,
not all independent, By means of (3), n of the d +n variables may be expressed in terms of the remain-
ing d independent variables which are always made the n slack variables and d — n design variables,

Denoting the n dependent variables by v, Vg, «eve , Vn and the d independent variables by w4, wo, .,
wq the problem, in general terms, becomes one of minimising

G = f("':lv eeen 3 Yy Wgy seeey Wd) ] (4)

subject to

fj. (Vl, wene 3 Ty Wy seee Wd) = Ci y (5)
i = l, 2, ssany NN
where the Vi, Vg, ... , V are functions of the wy, Wy, «uu, Wq . Although the vy, Vg, «1es , ¥y CADROL
in general be obtained explicitly in terms of the w4, Wg, ..., , Wq, the partial derivatives 9G, 2G, ..,
OG can be evaluated and a.gradient technique used to minimise G =h(w 4, wo, vco, W) dw; OWg
dwd :

From (4) .
_.aG = -.a-!— + E—f— aV' 6
Bwp T Ow | Ovj Bw, ©)
i=1,2 ..,d
j= 1,2,..,0
From (5) .
oFf Jf, Iv
R | kK .
5Wi avk Bwi (7)
i=1,2,..,d
i® 1,2 ..,n
k= 1,2 ..,n
In matrix notation (6) and (7) become
Gy = Vg F, + F, (8)
and .f"w e Vw -ﬁv ' (9)
whete Gy is the d x 1 column matrix with elements __%Q__
Wi
Fy isthe d x 1 column matrix with elements 3:'.
i
Fy is then x ] column mactrix with elements of

v

—

Vw is the d x n matrix with elements -g%l
i

Fw is the d x n matrix with elements%i-_
i

9

Fv is the n x p matrix with elements .a_fL
-
]



Hence, from (8) and (9),
Gy = Fy " l-':tlv I-;:.T Fy - - (10)
9G_ 9G 3G

From this expression the components -:a—-;-l, ea-;-;, cerey -é—;—&- may be evaluated from a knowledge
of the various partial derivatives of f and ;. It is ptoposed to focus attention on cases where the
partial derivatives of f and f; are obtainable analytically so that the elements of Fy, Fy, Fy,, [, may
be written in terms of w,, w,, ..., wd afid . vy, ¥5,.., V5. Where derivatives are not possible analyt—
ically, provision can be made for their numerical evaluation and (10) used to evaluate the required

aG |, 9G 9G as bef
components Cb , oG . . as betore.
P oWy dw, wq

It should be noted that when q of the n constraints (2) are equalities there are d +n — q variables
in all, n dependent variables, and d - ¢ independent variables of which n - q are slack,

Since the method accommodates 2 maximum of only d constraints it is impossible to include al]
the d conditions that all design variables be positive:

x; 20 , (11)
i=1,2 ..,4d

as well as other types of constraints. It is advisable however to include as many of these conditions
as possible to make the total number of constraints in any problem the maximum of a, A preliminary
computer search of the unconstrained minimum of g(x,, Xp,..i0, Xg) may indicate the design variables
most likely to violate (11).

It is essential to be able to evaluate G when required, both because jt js necessary to know
the actual minimum cost, maximum efficiency etc. of the resulting design, and because it is the only
way of distinguishing the absolute minimum from relative minima., Also, values of G are required at
each step in the proposed minimisation procedure, Since both the evaluation of G and the components
96, 936G eean s @,,G_require the values of v,, v,,.... » ¥n corresponding to those of w,, Woseee, Wy,
dw, dw, a“’d‘ :
a suitable method for the simultanecus solution of the constraint equations (5) is required. The Newton —
Raphson method

V(p + 1) = V(P) _ (Fv—l )T(P) Y (P) . (12)
where  V is the nx1 column matrix with elements vj
and Y is the nx 1 column matrix with elements fj-Cj ,

has the advantage thar it requires no more information than is already available. If an acceptable
design does not exist, (12) will not yield a solution and provision must be made for the iterative process
to be halted after a sufficiently large number of cycles. ,

During minimisation where the values of w 15 ¥g,...., Wy are changing, an estimate of the
corresponding changes in v, , VYo ,4eeey ¥y may be obtained from

N VL N (13)
dw; v,
Hence AV x - FDHTE aw | (14)
where lAV is thel r;x 1 column matrix with elements Svi
and AW is the dx 1 column matrix with elements dw;

By making the change Ay given by (14) to V before applying (12), only a few Newton - Raphson iterations
will be required to obtain the Vv corresponding to the new ¥, W being the dx 1 column matrix with
elemeats w; :



MINIMISATION OF_ G

. , c e . . () (o) (o)
A gradient method is used to minimise G. Starting with an initial guess wi ', wp 7, w.u, Wy
at an optimum design, a sequence of values of w4, Wy, ...., Wq IS constructed using
w(P +1) . W(P) _ )\GW(P) (15)

until 8 minimum -is reached. A is chosen such that che step length

AN NE

is halved if the step is large enough to cause an increase in G rather than a decrease (for the minimisa—
tion case ). The procedure corresponds to taking steps in directions perpendicular to contour lines of
constant G = h(W,, Wa, ...., wq ). It is clear that the work required to find a minimum is greatly
reduced by a good initial guess at the optimum point, although this is in no way essential for a correct
solution,

A minimum is reached when

| 96 ] < ¢ forall i, where € is a small positive constant.
s
i

The case where the function h(w,, w, .... wg) has several minima may arise. It is essential
therefore that several starting points be chosen and the problem re—run in each case ro check for the same
result, If there are several minima the absolute minimum representing the solution to the problem is
found from a knowledge of values of the functionat each of the individual minima, It is unlikely that
the gradient method will come to rest at a saddle point, if there is one. If it does, however, the results
of other runs will yield a lower value of G. The physical aspects of the problem will often suggest the
behaviour of the criterion function.

When searching for maxima instead of minima, (15) becomes

gD L @) o)

COMPUTER LOGIC DIAGRAM

A logic diagram for a computer program based on the method is shown in Figure 1. Starting
with an initial guess W ©) and V{°) of W and V and a step length s, the correct V corresponding to
the initial W is found by the Newton — Raphson method. At each iteration N is advanced by unity
to keep count of the number of iterations required for convergence to the specified accuracy €,. If
an acceptable design does not exist N will become equal to some limiting value, In this case an
identification can be punched and the program terminated. When the correct V corresponding to wlo
has been found, G is computed and G, V, and W are stored in Go, Vo, and W, respectively. The
components Gy, of the gradieat at that point are computed and punched together with V, W, and G.

If the absolute magnitudes of the components of the gradient are all less than some prescribed quantity
€, the point is a minimum and another starting point is chosen.

If the point is not & minimum, a change AW to W is computed such that the distance between
the new point with coordinates W~ AW and the old with coordinates W is s. The approximate value of
OV required to adjust V is computed and the correct value of V corresponding.to the new W is obtained
from one or more Newton — Raphson iterations, The value G of the function at the new point is com—
puted and compared with that at the old, Go. If the step has been such that'G <Gy a new station is
established and the procedure repeated. If not, the step length is halved, a different AW computed,

and the step length halved again in preparation for the next sctep. This procedure is repeated until a
new station is established, Finally a minimum is reached. : ‘

Parameters L and Ny keep a record of the number of times s has to be halved to establish a
particular station and the total number of stations established respectively. Should the initial s be
too large the program will automatically reduce it rapidly. Should it be too small a minimum will be
reached but at the expense of some computer time. In selecting an initial s therefore the tendency should
be to overestimate, Provision is made for stopping the program if Ny becomes excessively large.



EXAMPLE

To demonstrate the method simply without referring to any specific design problem it will
be assumed that it is necessary to minimise

G = 12— 06x; — 4x, + x,* + 2x,?
subject to x, £2.5
Xy Xp+t2x, 510

The function G = g(x,, x,) is shown in contour in Figure 2 and has a minimum value of unity at the
point (3, 1). The region in which the solution must lie is shaded,

The constraints are written

X, + z,° = 2,5
Xy Xp42x, + 2,0 = 10
Choose Vi T Ey
Yo T Xy
Wi T2,
Wg T Ep
Then
- 1 Vo a - 2w, o
Fv = y Fo = s
o 2+vy . o 2w,
v, -6 o vitwy?— 25
Fv = , Fw = N Y =
vy~ 4 o ViV +2vy +w,y? — 10

This problem was tun on an IBM 650 computer for one set of initial values:
wio - 7 viod .o,
W2(0) - {3 ‘,2(0)

and the path followed during solution is shown in Figure 2,

A step length s = 2 was used and five
station points are shown.

Although it is not strictly correct to join the station points by straight
lines when plotted on the x plane, this is done for convenience, The analytic solution to the problem
is the point (2.5, 1) with G = 1.25, It took 2 Newton - Raphson cycles to find v, and v
. o) _ o) _ P
ing to w, ={Z, w42% = {25 and thereafter a minim
cycles to cortect V after the adjustment (14
etrots €4 and €, were

2 correspond—
um of 1 and a maximum of 2 Newton — Raphson
) had been applied. The values chosen for the allowable

€, = €5 = 0.002
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FIGURE 2., SOLUTION OF EXAMPLE PROBLEM



