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ABSTRACT

This paper reviews the salient fearures of a number of iterative methods for solving
the matrix equation Ax =b, and includes a brief description of the calling sequences to
Fortran subroutines written for the IBM 360/50 with an assessment of the computational
efficiency of the different merhods for low order full matrices. Some attention is given to
the question of aéceleration and the necessity for double precision arithmetic.
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1, INTRODUCTION

Some iterative methods for solving the matrix equation Ax = b have been programmed for
the IBM 360/50 H computer in Fortran V. This report gives a brief outline of each of the iterative
metheds for which a routine is available (more detailed descriptions and discussion of the applica-
bility of the different methods are given by Varga (1962) for example). The extension from point
methods to block methods while retaining the same iteration scheme is described in some detail.

Finally some general remarks are made about acceleration procedures and the applicability
of each scheme to a particular class of matrices. It is intended that a routine testing of the
different mecthods against a mattix typical of a given class will be used to decide which method
is most suitable for that class. A description of the calling sequences to the routines is supplied,
in case the reader-should wish to experiment with these routines himself.

2. POINT ITERATIVE METHODS

Iterative methods for solving the equation
Ax = b
may be written in the form
¥ = Mx +k ,
where an iteration matrix M is used to define the iterative procedure giving the m +1 jterate x™*l
from the previous iterate xm
xmtls Mxm 4 k|

Point iterative methods are characterised by the fact that each element of x™*! }5 calculated in
turn (as opposed to block methods where a number may be obtained simultaneously). A number of
point iterative methods have been coded for the IBM 360/50H in Fortran IV, These routines were
written to permit experimentation with convergence criteria, the effect of double precision on the
speed of convergence for each method, and to provide a comparison of the various methods for
some particular matrices. They are thetefore not optimally coded, with respect to core require-
ments, because the iterates are kept separately in the routine; this enables double precision to
be introduced without coding alterations. The point methods which have been coded are:

Gauss method
Gauss-Seidel method
Jacobi method
Aitken method

Successive over-relaxation method.

With the exception of the Gauss method all contain an acceleration procedure which we shall now
describe.

Suppose that a cyclic scheme is started with an initial guess x' related to the real solution
x by

Applying the iteration scheme, the next iterate x* is given by
¥ = Mx'+ k

since x = Mx + k ,
%% = x= M(x'~ x)

Ma .

n



In general
xmtl oy = M,
Suppose further that the eigenvalues of M are real and positive and ordered so that

T W -

Then the vector ¢ may be decomposed in terms of the eigenvectors y; associated with the eigen-
values A; of M

“os X%y

™M™ ()
_ m
=x +M (? O'.iyi)
=x+ 3 a3 A] y
i

We shall suppose also that the coefficient & ; is non-zero. (Rounding errors will probably introduce a
y1 component even if the initial errér vector did not contain one),

Then as m becomes large
™ > s XT ®%1va

Considering successive iterations,
m+1 m
X = X+ Aq Oy V1

+1
xm+2 = X + }\.r‘t;_ 04 ¥i

Selving for x gives the result

miz, M omu_ mt,
1-X

which requires the vectors x™* and x™*2, whether or not the iterative scheme in question needs to
have.both stored simultaneously. For example the Jacobi methad requires x™" to be retained until
all the elements of x™*2 are calculated, while the Gauss-Seidel method successively replaces the
elements of x™*1 by the corresponding elements of x™* and in its unaccelerated form does not need
storage for both iterates. With acceleration the Jacobi and Gauss-Seidel methods both require the
same storage, However the gain in computational speed when acceleration is used would usually
outweigh storage considerations.

X ‘= X ,

An estimate of the quantity Ay is usually available without much additional effort. When the
iterates are obtained the true solution x is of course unknown, but some measure of the convergence
of the iterative procedure must be calculated to determine when the iterations can be terminated.
One common measure of the convergence is the Euclidean norm of the vector

hxm*2 — gm#l || =[5 (xmt2 _ xm*ly2 %
i i i
which can be used to stop iteration with a test of the type:
| xm*2 — xm* | < 102

mt2 _ xm+1 ”

In any event the quantities “ X can be used to give an estimate of Ay, Thus

Xm+2 -_ Xm*l =3 ?\.n;‘ (A-i - 1) 061 Y1

H

x2t _em ‘ml—lr(}\1— 1)y sy,
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Some difficulties may be encountered in the application of this acceleration procedure., In deriving
the formulae we have used

Xm.ﬂ; x + )\.n; 0y yyq ’
which assumes that sufficient iterations have elapsed to make the contribution of the other eigenvalues
to x™* negligible. This assumption could be untrue if the coefficient 0y were small for the particular
x1 chosen, or, more usually, if the subdominant eigenvalues are very close to Ay in magnitude. There
does not seem to be a generally applicable answer to the problem of finding an optimum acceleration
interval, If a condition is placed on the variation of the estimate of A4 from iteration to iteration then
we may miss the advantage of applying the acceleration earlier (even when it is not quite accurate .in
ignoring lower eigenvalues). We must also store the previous vector iterate if the unaccelerated
procedure would be overwriting it and this also lowers the computational speed of the resulting pro-
gramme. On the other hand, if the number of iterations is too small,introduction of the acceleration
procedure often will slow the convergence considerably and may inhibit convergence altogether. A
little experimentation on a typical matrix problem would be the ideal way of resolving this question
for a given application. Other difficulties may arise when the matrix M does not have the spectral
properties which have been assumed. For example, if the largest numetical eigenvalue is negative,
then for m even,

m
xm+1 = x + }\71(11 Y1 5

m+l
Xm+2 = X o~ ?\.1 {11 Y1 5

S M mi2
1-Ay

where now A, is negative. If we use the Euclidean norm estimate of Ay we will be unable to obtain
the negative value and the acceleration will then produce a serious error. This problem can of course
be surmounted by applying the accelerafion to iterates separated by two so that the quantity of interest
is Al , which will be positive and real if Ay is real.

When the dominant eigenvalues of the iteration matrix are complex, such a simple extension is
usually not possible since l M |n & M" for general complex Ay and any integer n. To ovetcome this
problem the Aitken double-sweep method can be employed; this can be shown (Fox 1964) to have real
eigenvalues when the other methods (Gauss-Seidel in particular) are convergent but have a complex
dominant eigenvailue.

To conclude the discussion of acceleration, it must be said that the use of acceleration
raises the problem of the necessity for double precision. Provided the convergence criterion on the
Euclidean norm is larger than the roundoff etror which may arise in calculating it, double precision
arithmetic has no influence on unaccelerated procedures. However, the use of the acceleration
factor Ay/(1—A;) when A~ 1 requires careful calculation of the differences (x™*2 _ xm*l ). For
safety, double precision arithmetic is necessary at this point, though single precision sometimes
suffices. '

Each method will be illustrated for a 3 x 3 matrix and also written so that the matrix M of
the iteration is clearly exhibited. A few comments on the methods are also included in the description.
We will be looking at solutions of the equation

Ax = b
and will make the decomposition of A

A =D-E-F,

where D is diagonal (aii =0, j +1i),
E is strictly lower triangular (ajj =0, i i),
F is strictly upper triangular (ai-]- =0, j <€1i) .



If A = 411 e Ass
agzy Agp 4dgzg

a1 ago Aaag

then
azgqy O O 0 0 0 0 -ai» -—aig
D= 0 Az 0 ,E=|-as1 0 0}land F= |0 0 —a23
0 0 Agn ~agqs —agp 0 ] 0 0

The formal descriptions of the iteration matrices in matrix notation are due to Varga (1962).

2.1 Gauss Method

a11%1 * a1pXp t aigxg = bi

ag1 X1 t+ aspXs t aszxa = bo

g1 X1 * aspXp * aggxs - bg
rg = by1 = (211X1t aioXp * asgXs)
tz = be — (agi1Xy *aszxs * @23 Xa)
rs = ba — (agix1 t azexs *+ agsXa)

The method selects, at any point in the calculation, the largest (in modulus) r; and
replaces the old xj by the value which reduces 1; to zero

The remaining r; are then recalculated with the new value of x; and the largest of these
is again selected, solved, and so on, The procedure is not necessarily cyclic (though it is
expected that a cyclic process will emerge as the number of iterations increases). Because it
is non-cyclic it cannot be written in the form

.'_
x™ = Mx™ + k

nor can it be accelerated. This is a serious drawback because the acceleration offers such a
saving in execution time for the other methods. Its success in the WDSN programme (Askew and
Brissenden 1963) must be viewed as fortunate, and the more recent addition of an acceleration
procedure to this code (which suppresses the group selection technique and turns the scheme
into a cyclic one).seems assured of better execution times (Green 1967). There seems to be no
possible advantage to be gained. by its use, except for some particular starting vectors, and our
discussion will be on the basis of general starting vectors,

2.2 Jacobi Method
411X, + BapgXp + Aaizxg = by
Apq Xq + Aop Ko + ApyXg = by

ag1 Xy + dAgzXo t agz%g = bg



Xq = = {bl — {a10%2 + alaxa)]
11
1 . .
= e - + .
X2 = o (b, (201 %1 Y xa) ]
Xg = ...!’.... [bS —_ (33131 + a32x2)] a
aag .
The iteration procedure for passing from ™ to Xm+1 is
+1
A0 L b, - (@ xD +asaxi))
a1y
71
X;ﬂ = ....].;..... [b2 - (agl x11'ﬂ + assg xlﬂn) ]
ago
+1
Xgm :L [bS — (331 x;_“ + aSQXgl)] ‘.
aszg
In matrix notation
Dx = (E+F)x +b )
— | —~1
x =D (E+F)x+D " b
‘ _ —
e pbp+Fyx™+ D'

We requite that D7

= Mx" +k

! exists and that L. (D! (E +F) ), the spectral radius of the iteration matrix, be

less than 1 for the procedure to converge.

The metho
of all these routin

. . m m+l .
d requires storage for the iterates x  and x but as the accelerated version
es require this double storage, this cannot be viewed as a serious disadvantage.

Double precision arithmetic is recommended for the accelerated procedure though convergence can
sometimes be obtained as rapidly with single precision.

2.3 Gauss-Seidel Method

As in the Jacobi 1I'nethnd,

Xs—__]'.....

Here the iteration

{b; — (@1axs *+ a1axq)]
[VbQ — (@ag1x1 t+ aga Xa)]
[bs — (assx1 +agoxz) )

procedure replaces a componeat of x as soon as it is calculated.

+1 . f
xP =1 [by - (a10%2 + a1z x3) )
asy
1 4 '
FE L fb, - (asy x1 + 3—23—-'&-?) J
doo .
+ 1 +
XI:I; I —_ [bs - (aa: Xll:-Ln 1'“132 X[gﬂ)] .



In matrix notation
(D-E)x=Fx+b ,
x = (D-—Ey'Fx+ (D-Ey'b ,

™M - DBy lFx™+(D-E)lb

(D - E)_l must exist; since E is strictly lower triangular }D“1 must exist. For the process to
converge, pl(D - E)"'F] <1. . ' :

.When the .Jacobi martrix p~! {E +F)is non-negative (when all the elements are 2 0}, then it
may be shown that the unaccelerated Gauss-Seidel is superior to the unaccelerated Jacobi method.
However, for the accelerated methods the same conclusion may not be valid because comparison of
accelerated methods will require theorems on the subdominant eigenvalues and these theorems
usually cannot be established.

2.4 Successive Over-Relaxation Method (SOR)

Successive over-relaxation is an extension of the Gauss-Seide! scheme, which is computation-
ally similar to the acceleration procedure we have previously discussed. The Gauss-Seidel scheme
is ‘

mtl _ 1 i m m

X1 = m(bl ~ a45 X3 — Bd1g X3 ) ,

mtl _ 1 m+l m

Xo = — (b2 — az1 x3 — agg X3 ) ,
ago

. m+ ' + m+l

X:rsn1=—-l-—(b3—331x1ml—asgx2 )
azg

In the Point SOR method outlined below, the auxiliary vector y™ ! is used for convenience in the
definition and is not retained in the actual computation. '

mtl _ 1 ) m m
Y1 T (b, — 232 X0 — @15 X3 )
a1
+ + :
ximjl:wyTl '!-(l—w)x{rl
mt+]l 1 m+l m
= —(bs — asny x — 893 X
Yo 322_( o 21 Xj 23 X3 )
+1 m+l m
;z:gl = wys + {1 —- w)xg
m+ mtl m+1
¥a =1 {(by — ag1 = — ags Xz )
a3
m¥ + '
x;'l': wys e (1-w) x5

where w is the over-relaxation parameter.

In matrix notation

1

D-wBEx™ = {(1-w)D+wF 1} x"+wb ,

m

x™ . D wEl {1l-w)D+wF }x™ +(D-wEy wh ,
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The parameter w must be estimated, and this is the major problem in the use of point SOR. In
block relaxation problems the best value of w is often determined by some cyclic property of the
block iteration matrix. No such theory exists for the point methods and there seems little advantage
in using anything other than w =1 (which is, of course, Gauss-Seidel).

As has previously been remarked, the use of the acceleration procedure in these methods,
while computationally desirable or even necessary, removes the possibility of performing a rigorous
comparative analysis of the point methods. Firstly the acceleration procedure is applied after some
specific number of iterations (or, with more sophistication, when the estimate of the largest eigen-
value has settled to a specified tolerance). In any event the success of the acceleration procedure
depends on the proximity of the subdominant eigenvalues to the dominant one and the size of the
coefficients of the appropriate eigenvectors in the expansion of the initial error. These properties
are very much problem-dependent and the working principle which has been adopted (in the picus
hope that it is reasonable) is that if a particular procedure is better than another when both are
unaccelerated it will be no worse when both are accelerated.

The acceleration procedure also assumes that the largest eigenvalue of the iteration matrix
is real and positive. The last point method which .is discussed is designed to ensure that this
result will be true. The analysis of this method and the proof that the largest eigenvalue is real
is given by Fox (1964).

2.5 Aitken Method

This is a variant of Gauss-Seidel in which.an up-and-down sweep of the equations is performed
- - m - Ay
on each iteration. y is, as before, an auxiliary vector.

Xq = — (by — ajpxs — d35x3)
aga
1
Xo = &Ess (bs — 291 %1 — agg X3)
1
Xg = o (b ~ agy1 x4 — ags Xp)
33
+ .
Y1m = —L— (b, — El12—3i2m = ai1g Xg] )
a3 4
m+l 1 m+l m
Yo < (by ~ 821yt —apg Xg )
m+l 1 ) m+l m+l
X3 = 3 (bg ~ agq y1 — ase2 V3 )
33
. mtl 1 - m+l m+l
Xo = {bz — ag, ¥1 — dpg X3 )
apo
m+l 1 m+1 m+l
X1 = — (b1 — az2 %2 — aig Xz ) .
a1
In matrix notation
(D~E}y = Fx +b
+ - _
y™ - @By ' F ™ +(-E' b

CD—F)xﬁlﬂ: E ym+1 +b

m+l
X

O-F)"Ey™s o-F)lb

m

O-F) ' E@-E)y'F ™ +

(D-_,FTJ EE'{D«-E)MI + 11 b .
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This method requires approximately twice as many computations per iteration as the others, but its
property of ensuring that the acceleration procedure is well-founded will be useful for some types
of matrices. which do not have a largest real eigenvalue with the other methods. If the Jacobi
iteration matrix is non-negative and irreducible there will certainly be a largest real eigenvalue,
but if the matrix is cyclic of index k there will be k—1 other roots equally spaced around the
circle | A | =p (M).

2.6 Calling Sequences

CALL GAUSS (A, M, N, NIT, CON) Gauss
CALL GSPVACC (A, M, N, NIT, CON, NACC) Gauss-Seidel
CALL JPACC (A, M, N, NIT, CON, NACC) Jacaobi
CALL ATPACC (A, M, N, NIT, CON, NACC) Aitken

CALL SOPACC (A, M, N, NIT, CON, NACC, W) SOR

where A is assumed dimensioned (M, M+2) ,

the order of the equations is N <M ,

ai1, A12, A1s, - . - a1y are in A(1,1), A(1,2) . .. A(LN) ,
anNt, AN, + .« + -« BNN A€ iD A(N,1), A(N,2). . . A(N,N) ,
b isin A(L,N+1).......ANN+1) ,
X guess isin A(LLN+2).......ANN+2) ,

NIT is the maximum number of iterations permitted,
CON is the convergence criterion on the Euclidean norm,
NACC is the number of iterations before each acceleration attempt,

and w is the over-relaxation parameter of that method.

In each routine the mattix A and the vector b remain undisturbed. On exit the x guess is replaced
by the solution obtained by the routine.

3. BLOCK ITERATIVE METHODS

Block iterative methods are extensions of the point iterative methods in that a different
splitting of the matrix is employed to generate the iteration matrix. Recalling the methed for
deriving the point iterative methods, let

A=D-E-F,

where D is diagonal, E is lower triangular, and F is upper triangular. Then we may write the
equation, :

Ax= b ,
as (D-E-F)x =b.

Now the various methods are simply different combinations of the two sides of this equation.
For example,



(E +F)x +b
x= D (E+F)x +D ' b Jacobi
which gives the iteration scheme

+] -1 -1
e T E )" + Db

and
(D-E)x = Fx +b

(D~Ey " Fx + (D-E) "
Gauss-Seidel ,
which.gives the iteration scheme

m

™" - (D-E)y”

m

+ (D-E)"
and so on for the methods we have previously discussed.
Block iterative schemes can be derived in precisely the same manner by relaxing the con-

dition that D is to be diagonal and requiring instead that D is to be block diagonal. Thus D can
be written

b, oo | o o |
0 | Do O - 0
0 0 | Daa| - 0
0 o} o - 0
o) o| o0 | — | Dm

where each Dj; is square.

Then each element x; of a point iterative scheme becomes an element X; of the partitioned
vector X. For example, if Dii is a 3 x 3 matrix then X4 will consist of 3 elements which will have
to be obtained by simultancous solution of the first three equations. Iterative schemes cannot
really be contemplated for the simultaneous solutions required in each step of a block iterative
method, because the convergence properties of inner-outer iterative schemes cannot easily be
determined theoretically, Two methods of solving within a block present themselves — either the
set can be solved on each iteration using an elimination technique such as Gauss-Jordan, or the.
diagonal matrices D;; can be completely inverted before iteration commences and the block element
Xj is then obtained from ‘a single matrix multiplication of a vector. In view of the likely number of
iterations, and the likely block sizes for a particular matrix, the inversion of the diagonal elements
will usually be warthwhile. If the Dj; are of small order a large number of iterations will often be
required and the extra effort to compute D! once will be negligible. If the D;; are of large order
(for example half the order of A) then it would probably not be economic to compute and store the
inverse,

Of course these block methods can be accelerated in the same way as can the point methods,
and only the iteration matrix M is different. The purpose of using the block methods rather than the
point methods is to reduce the spectral radius of the iteration matrix M. Against this reduction must
be weighted the extra time involved in computing the inverses or solving the equations within a block
at each iteration. The main advantage of the block methods is that special pastitionings can lead to
matrix equations with cyclic properties, which enable quantities such as the optimum over-acceleration
parameter w to be simply determined.

With these methods, the extension from point to block method can be made quite easily. It is
necessary to retain an additional storage area, as long as the vector in any of its partitions, to cope
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with the matrix multiplication in the block methods. The coding is only slightly more complex than
for the point relaxation methods and the opportunity to use such spectral-radius-reducing schemes
offsets the additional effort involved.

A further vector beyond those required for the point methods is needed as input to these
routines. This vector defines the disposition of partitionings within the matrix A. The additional
variables are NCUT and (NCUTT(), I =1, NCUT) where NCUT is the number of diagonal blocks.
Block I consists of Equations 1 to NCUTT(1); Block 2 contains Equations NCUTT(1) +1 to
NCUTT(2) etc. Obviously NCUTT (NCUT) =N. By allowing the partitioning to be completely
arbitrary we have introduced some coding difficulties into the methods where the inverses are not
computed, but the equations are solved by elimination on each iteration.

Variations. in the answers in the ‘block methods are larger than in the corresponding
point methods, due to thesingle precision computation of the inverse. Two different block sizes in
a block Jacobi solution of the same 50 x 50 matrix problem will produce differences in the fifth
significant digit, and the error can get larger if the diagonal submatrices are nearly singular. In
most physical problems errors introduced by the inversion of the diagonal submatrices are not an
embarrassment since the precision to which the inverse is calculated is usually better than that to
which the original elements are known. The purpose of introducing double precision is not to ensure
that the 'right’ answer is obtained but rather to establish definitely when an answer is properly con-
verged. Within this framework, double precision computation of the inverses of the diagonal submatrices
might give a slightly different set of answers, but it would have no effect on the convergence properties
and is therefore unnecessary.

The prevmus remarks about retaining an extra storage area for these matrices need to be quali-
fied. If the matrix is explicitly defined (and thus occupies a storage area equal to the square of the
length of the vector), when the inverses have been computed the multiplication by D™ can be performed
explicitly. If this is done the computation time per iteration is teduced by about 10 per cent and the
extra storage area for an intermediate vector iterate is not yet required. If the matrix 1s only defined
implicitly it is not possible to form the complete iteration matrix by multiplying by D™°. The penalties
incurred are a slight increase in time and the extra storage; against this is the saving of core storage
achieved by implicit definition of the matrix A.

3.1 Calling Sequences

CALL GSBAC1 (A, M, N, NIT, CON, NACC, NCUT, NCUTT) Gauss-Seidel
CALL JBACl (A, M, N, NIT, CON, NACC, NCUT, NCUTT) Jacobi
CALL JBAC2 (A, M, N, NIT, CON, NACC, NCUT, NCUTT) Jacobi
CALL AIBAC1 (A, M, N, NIT, CON, NACC, NCUT, NCUTT)} Aitken
CALL SOBACL (A, M, N, NIT, CON, NACC, W, NCUT, NCUTT) SOR

The arguments of the subroutines are those defined for the point methods with the extra variables
NCUT and. NCUTT, where

NCUT = the number of diagonal blocks in the partitioning of the matrix, and
NCUT() I = 1, NCUT specifies the way in which the partitioning is to be achieved.

The diagonal block I is assumed to contain elements A(],K) where

[§}

J = NCUTT(I-1) +1 to NCUTT() ,

K = NCUTT(-1) +1 to. NCUTT(D ,

i}

NCUTT(0) is assumed 0 and need not be defined,

and NCUTT(NCUT) = N (the order of the equations) and should be defined.
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4, SOME RESULTS

Some results will now be presented for a 50 x 50 matrix of the type that might be found
in solving the thermal group fluxes of a space-independent reactor cell, where the solution of
the slowing-down groups can be found without iteration and the source for the thermal groups is
provided by scattering from the slowing-down groups. The matrix has been generated with all off-
diagonal elements negative and drawn randomly from (0,1). The diagonal elements a;; satisfy the
condition

aj; = - S}‘;T ajj + 0.1 ,
ensuting that the Jacobi point iterative martrix will have a spectral radius less than unity and will
also be irreducibly non-negative. In fact, with this definition the spectral radius of the matrix is

very close to unity, so that the use of unaccelerated point methods may be excluded by their
extremely slow rates of convergence. Such a matrix in a reactor cell problem would be produced

by the presence of very small concentrations of absorber in a moderator of low thermal cross section. .

.The convergence criterion used throughout the ¢omparisons was that the Euclidean norm
”x —m m+l ﬂ where x  and x m+t represent successive iterates should be less than 107%. A maxi-
mum number of 50 iterations was imposed because it would be absurd to use an iterative method
involving a number of iterations equal to the order of the matrix. Matrix inversions involved in
the block iterative methods were performed using the SID routine (Pollard 1963, unpublished work)
and the time involved in inversion (and remultiplication) is included.

Table 1 shows a number of different runs of SOR routines using various values of w and
the acceleration interval, as well as the number of blocks in the partitioning of the matrix. This
matrix is a full matrix so the block methods decompose into cyclic matrices only for the particular
case of the 2-block partition where the Jacobi iteration matrix becomes of the form

o | F
T which is 2-cyclic.

E ] o

Without any.cyclic properties, determination of a relaxation parameter is difficult and for the results
quoted the best value of w would be w =1 (the Gauss-Seidel method).

For those Gauss-Seidel cases where the acceleration interval is 10 and the process is stopped
after 11 iterations, the time spent in the routine decreases as the number of blocks increases (with a
corresponding reduction in the size of the diagonal submatrices which must be inverted). It appears
that the convergence properties of the accelerated method depend more on the acceleration interval
than on the number of blocks in the matrix partitioning and that in such circumstances the point
method will be quicker than any non-trivial partitioning (especially since the coding of the pomt
method is simpler, involving substantially fewer indexing operations). -

For intercomparison of block methods, we shall ignore the SOR results since the best SOR
results weré obtained with w = 1 and Gauss-Seidel will be included specifically. Comparisons of
the results presented in Table 2 indicate that block methods are not suitable for use with matrices
of this type. This is hardly surprising since the matrix is full (its elements are non-zero) and
block methods do involve an inversion before iteration can commence. Should the matrix exhibit
some features such.as block tridiagonal form then obviously the block methods would assert their
advantages in skipping multiplications by zero which.the point method will perform. The attainment
of an optimum over-relaxation parameter is difficult without some ¢yclic property of the matrix to
guide the choice, and it would appear that Gauss-Seidel is probably as good as any simple SOR
scheme could achieve.

Between Jacobi, Gauss-Seidel and Aitken there seems little to choose. In their accelerated
forms Jacobi and Gauss-Seidel require identical storage and take equivalent times and while theoret-
ically the Gauss-Seidel matrix has a smaller spectral radius than the corresponding Jacobi matrix,
the acceleration procedure evens out'the advantage of the Gauss-Seidel, leaving little to choose
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between the two. The Aitken method is distinct from either of these and offers more certainty of
success for this type of matrix. In each iteration of the Aitken method there is almost twice as
much arithmetic as in Gauss-Seidel, with the coding not quite so simple. Against this the eigen-
values of the Aitken iteration matrix are real (for the class of matrices under discussion} and
positive, so.the acceleration procedure will always rest on correct assumptions.

It does not seem worthwhile to pursue the discussion of block methods further. Most
applications of the block methods are somewhat specialised, in that the physical problem is
presented in a form which is obviously suited to a block iteration scheme. When such.a form
does not exist, as in the matrices presently under discussion, it is not surprising that the
advantages of block methods are not manifested.

The matrix used in the test runs has an irreducible non-negative Jacobi iteration matrix
for which.a number of theorems exist. For example, it can be proved that the rate of convergence
of the Gauss-Seidel method is twice that of the Jacobi method for this type of matrix. This result
is of no practical interest, since neither method will converge without acceleration and the accelera-
tion procedure prevents the application of non-negative matrix theory to the iteration procedure. The
effect of acceleration on different methods is strikingly illustrated for the 2-block Gauss-Seidel and
Jacobi comparison where the 2-cyclic form of the block Jacobi iteration matrix precludes the applica-
tion of the standard acceleration technique because both +o(M) and — p(M) are eigenvalues of M. The
theoty at the moment is confined mostly to ‘straight’ iteration techniques, which when implemented
often contain empirical improvements of varying degrees of sophistication, for which no satisfactory
theory has been evolved. Some numerical experiments should always be performed on a typical
matrix problem to decide the merits of the different methods for a particular type of matrix.
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A COMPARISON OF OVER-RELAXATION PARAMETERS

TABLE 1

Number of Acceleration w-Value // Residual Numbler of Time
Cutsg Interval Vector // Irerations (minutes)
2 5 0.5 50
" " 0.75 8.6 E-6 16 0.18
" " 1.0 9.0 E~9 16 .14
" & 1.25 2.7 E=6 16 .18
" " 1.50. 7.4 E-6 35 .25
2 10 0.50 9.6 E-6 24 .21
" n 0.75 5.2 E-6 11 .16
" " 1.0 1.8 E~15 11 .16
" " 1.25 3.2 E-6 12 17
" " 1.50 6.6 E=6 24 .25
10 5 0.5 ) 50
" " 0.75 2.6 E-6 21 .17
" " 1.0 1.2 E~-6 11 .10
v " 1.25 1.35E-6 22 .18
" M 1.50 5.9 E~-6 40 .29
10 10 0.5 6.8 E—6 31 .23
" " 0.75 9.9 E~6 11 11
i " 1.0 7.7 E=9 11 .10
" " 1.25 9.17E-6 18 .15
" " 1.50 5.9 E-6 27 .21
25 5 0.5 . 50
" " 0.75 5.8 E=6 22 . 17
H " 1.0 1.6 E=6 11 094
" " 1.25 4.2 E-6 22 .17
" " 1.50 9.6 E-6 43 .32
25 10 0.5 6.2 E-6 31 .23
" " 0.75 5.3 E-6 12 .10
" " 1.0 1.3 E-8 11 .093
Y u 1.25 9.9 E-6 13 11
" " 1.50 7.9 E~6 28. .21
50 5 0.5 50
N " 0.75 7.2 E~6 22 .16
! " 1.0 1.1 E-6 6 .078
! ! 1.25 5.0 E-6 22 16
n M 1.50 4.8 E-6 45 .32
50 10 0.5 8.7 E-6 33 .22
" " 0.75 6.2 E-6 12 .093
o i 1.0. 1.9 E-8 11 .078
" " 1.25 7.1 E-§ 13 .093
" " 1.50 9.4 E-6 28 .20




A COMPARISON OF THE VARIOUS ROUTINES (BLOCK AND POINT)

TABLE 2

Number of Acceleration . / Residual Number of Time
Cuts Interval Routine Vector // [terations (minutes)
2 5 Aitken 2.0 E-10 (¢ 0.16
" " Jacobi . 50 *
n n Gauss-Seidel 9.0 E-9 6 .14
2 10 A 2.0 E~15 11 .18
1] H J 50 *
" " GS 1.8 E-15 11 16
5 5 A 5.3 E-6 6 12
! " ] 5.9 E-6. 18 .16
" " GS 3.9 E-7 11 12
5 10 A 1.9 E-12 11 17
. " ] 4.1 E-6 11 .12
n " GS 5.1 E-9 11 .12
10 5 A 3.0 E-6 6 .11
! " ] 7.9 E-6 11 .10
n " GS 1.2 E-6 11 .10
10 10 A 8.2 E-13 11 17
" n B 2.7 E~-8 11 .10
n n GS 7.7 E-9 11 | .10
16 5 A 2.5 E-6 6 .10
" " ] 2.2 E-6 11 098
n " GS 1.7 E-6 11 .098
16 10 A 6.6 E—13 11 .16
" " ] 6.3 E-9 i1 .098
" " GS 5.9 E-9 11 .098
25 5 A 2.8 E-6 G .098
" " ] 1.1 E-6 11 .094
n " GS 1.6 E=6 11 .094
25 10 A 7.7 E-13 11 .16
. ! J 2.7 E-9 11 .093
n " GS 1.3 E-8 11 .093
50 5 A 2.5 E-6 6 .084
" " J 8.0 E~7 11 078
! _ " GS 1.1 E-6 11 .078
50 10 A 7.1 E~13 11 15
" " T 1.9 E-9 11 .078
" " GS 1.9 E-8 11 .078

* The 2-cyclic Jacobi method breaks down because the assumptions underlying the
acceleration procedure are then violated.




