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ABSTRACT

The slowing down spectra of neutrons are obtained for heavy water, light water,
and mixtures of heavy water and light water. It is assumed that fission neutrons are
produced uniformly throughout an infinite moderator and the only process considered is
elastic scattering, spherically symmettic in the centre of mass system. The {n, 2n)
reaction with the deuterium nucleus and absorption are assumed negligible,

The average transfer cross section, fast diffusion coefficient, the slowing down
area, and average velocity ratio are obtained for two—group calculations using the epi-
thermal spectra.
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1. INTRODUCTION

The collision density of neutrons slowing down in an infinite homogeneous moderator
consisting of n different nuclides is investigated in this report. It is assumed that fission
neutrons are produced uniformly throughout an infinite moderator and the only reaction con—
sidered is elastic scattering, spherically symmetric in the centre of mass system, The general
equation is solved for D20, H,0, and mixtures of D0 and H;0 using a direct numerical
solution of the equation on a digital computer, Two-group quantities are obtained from the
spectra 50 obtained.

2, THEORY

2.1 Slowing Down Spectra

The number of neutrons lost by scattering in the energy region dE around E per cm3 per
sec is

H(E) Zs (E) dE
The number of neutrons arising from fission in the region per cm3 per sec is
Ss(E)E

The number of neutrons per cm3per sec which enter the region as a result of scattering from higher
energies is

E/a;

Ey- L f H(E") Ti(E') SEL
i=1 % E

E

The appropriate neutron balance equation is therefore

n
PE)ZG(E) = Ss(B) +Z A

i=1 1-04

E/¢; o
L HENT(E"y B (1
E E

which on introducing the collision density and scattering probability simplifies to

n E/a

F(E) = s(E) +3 lla IF(E')Hi(E')_d_ll_:‘_’L . (2)
1=1 =0 &

E

Changing the variable of integration from energy to lethargy in equation 2 we get
n u
F(E) = s(B) +y L F(EDH(E') du' 3)
=1 =% e—uj

which has been found to be the most convenient form of the slowing down equation for sclution
on a digital computer when a particular moderator is being investigated.



The scattering probabilities Hj(E') may be calculated for a particular moderator from
the compilation of Hughes and Schwartz {1958), and the fission spectrum s{(E) may be calculated
from the expression given by Cranberg et al. (1956). It is therefore possible to solve equation
3 for the collision density F(E), subject to the restriction placed onthe fission spectrum,

s{E)

L]

0 forE> E,

F(E)

n

0 for E> Ep . ‘ (4)

Yquation 4 may be combined with equation 3 by replacing negative lethargies by zero when they
occur for the lower integral limit,

2.2 Two-group Epithermal Quantities

The two—group epithermal quantities are obtained using the following equations whose
derivation is given in the Appendix. The spectra are obtained by selving equation 3:

ou -1
Ese = Eol/? [ — FW) _ du y
° Zg(E)EY?

&,
n
1

Ss(E)E Y’

" fou o4
- F(u) du / IE 1/2‘[ F(u) d
L 3 St (E) Sg(B) 1 o ! '

u

”~n Ou . . ou
Ve F(u) 4 1/2 F(u d I
o L am {E° j S(mEdE T

]_.S2 = De/z;e .

2.3 Asymptotic Solution

The slowing down density and collision density are connected through the following
equation derived by Glasstone and Edlund (1952),

n E/a; 4B
«E) = ;;1 oy J (E-a; 1") F(E") B; (E") 4B (5)

v

In the asymptotic energy region (E < 0,01 MeV), where a negligible number of fission neutrons
are entering the region and the scattering cross sections are constant [Hi(E "y = Hi], the
solution of equation 3 is given by

F(E)

fl

k/E, where k is a constant

or  F(u)

n

EF(E) = k .



Substituting this equation in equation 5 and remembering that all fission neutrons will
eventually slow down into the asymptotic region (i.e. q(L) = 1),

n _1-—-1 -
k {Z HigiJ = /g ,

i=1
and therefore
F(u) = 1/& 6
in the asymptotic region.

2.4 Numerical Technique

The technique adopted for a particular moderator was to expand the epithermal range
into sub—collision ranges of lethargy width Au starting at u= 0 (E=Em). Au was chosen so
that the 1™ nuclide collision range was divided into exactly n) equal lethargy steps
(Du =wuy/n)). The collision range for the ith auclide then consisted of n; equal lethargy
steps of width Au and one remaining step which was only a fraction of Au in width (n; =
truncated part of _Ei__ . Numbering the sub—collision boundaries from the boundary at u=0

Ay

starting with j= 1, and introducing

n

Ei the energy corresponding to the jth sub—collision boundary

= Eme_(i_l)/‘\u
and
Fio= F(Ey)
5j = s(Ej)

Hij = H(E;)

allows equation 3 to be written
N D Au ] '
Fj = sj+ E L Aj Fp Hyy ) )]

=1 =% sj—(n; +1)

where Aj), are constants which express the integral rule used in evaluating the integral in
equation 3 and allow for both the sharp cut off expressed in equation 4 and linear interpolation
required at the low lethargy end of the collision ranges,

For example:

Al j—(ny + 1) =0, asno interpolation is required for the 1th quclide at the end of the
collision range, and when the trapezoidal rule is used

Ajj = 1/2

Ai,j—l = 1 , provided j>2, etc.



Equation 7 may be rewritten as a recurrence relation for Fj, as follows:

~1

P , ikFreHjx
- i k5 ®

[¢]

Au
1 - g;% 1-a; Aij Hjj

which relates Fj to previously evaluated collision densities.

The sharp cut—off assumed for the fission spectrum allows the calculation to start
at j=1 with

F] = 81 - S(I‘,m) (9)

and  Fj = 0 for j<1. (10)

The two—group quantities are given in tetms of integrals with the form

u
Gm“':):f Ym(EDEF(u')y du’ (11)

L]

Where Y, (E') depends on the moderator and the neutron energy. The numerical evaluation

of this type of integral is quite straightforward and may be carried out as the collision density
becomes available from the relation 8.

3. BATA USED

The epithermal range was divided up so that 50 lethargy steps comprised one collision
range for deuterium. The collision range for oxygen then consisted of slightly less than 6 sub-
collision steps, and the collision range for hydrogen covered all the sub—collision steps from
u =10, as a neutron may lose ~!l of its enetgy on collision with a proton,

The scattering cross sections for hydrogen, deuterium, and oxygen were obtained from
the compilation of Hughes and Schwartz (1958) at energies corresponding to the sub—collision
boundaries. To allow for chemical binding, the low energy cross sections for hydrogen and
deuterium were obtained from the H ;0O and D0 curves,

Six values were chosen for the ratio of the number of molecules of H,0 to the number
of molecules of the DgO—H ;0 mixture, R = 0 (D,0), 0.01, 0.05, 0.2, 0.5 and R = 1 (H,0). The
density of each mixture was calculated from the two extremes of pure D0 and pure H;0 given
by Conden and Odishaw (1958).

4. RESULTS

A programme was written in FORTRANSIT for an IBM 650 electronic computer, This
programme used the trapezoidal rule, both for integration invelved in equation 8 to give the
collision density starting at E = E, = 12 MeV, and for integration involved in calculating

integrals of the form given by equation 11, which were required for calculating the two—group
quantities,



The spectra obtained as output from the programme are shown in Figures 1 and 2,
For comparison, Figure 1 also shows the spectra for hydrogen and deuterium obtained from
the Greuling—Goertze) apptoximation below, which is exact for hydrogen:

F(u)

"

1 JJUS 1 t l
= (u)da' + % s(u) , (12)
1 | Y

Jii-a }
) &4 .
1‘( I 1

This comparison shows the bumps in the spectra obtained from the computer output to be due
to the presence of the oxygen, which has many wild fluctuations presenc in the scattering
cross section at high energies. The storage limitation of the computer did not enable these
fluctuations to be followed in great detail.

s
where % = {l-cl.i(1+ui+1/2 u?)}/

The asymptotic values of the collision density F{u) obtained from the computer cutput
agree with the values given in Table 2, which were obtained from equation 6.

The epithermal constants 35, ’\\.'Je/vo , De, and L% calculated down to the epithermal
cut—off energy, 0.0711 &V, for various D40 ~ H20 mixtures are given in Table 1. The corre—
sponding graphs are given in Figures 3 and 4,

Also the calculated I%; to indium resonance, 1.44 eV, is given as a function of H,0
content of the mixture in Figure 4, This is compared with the experimental results of Wade
{(1956) though it should be noted that Wade's experimental points are determined from the slow—
ing down density of neutrons derived from a point fission source measured by point indium

detectors.
5. SUMMARY

The method described in this report was used to obtain the collision density F(u)} for
D20, H;0, and four mixtures of D;0 and H;0 and gave the results shown in Figures 1 and 2.
Two—group epitherinal quantities were obtained from these spectra and gave the results shown
in Figures 3 and 4 as well as Table 1. The spectra obtained are exact for the conditions
assumed, but are inaccurate due to neglect of the anisotropy of elastic scattering, the (n,2n)
reaction in deuterium and 1/v — absorption in hydrogen,

6. NOTATION
Aj = mass ratio of i nuclide to neutron
Aj -1 2 . L e :
o = — . Minimum energy of a neutron, initial energy E, afrer a single
A: + 1 . . . :th . '
1 collision with an i*" puclide is a; E,
L = neutron energy

Enm = maximum energy of neutrons considered in the calculation

W

12 MeV; it is assumed that s (E) = 0 for E> Ey

energy of neutrons having a velocity v, = 2200m/sec

!
[=]
It

0.0253 eV
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ol

zsi(]i':)
Zo(I)
Y e(E)

s(I3)

N(E)

#(E)

F(E)

9(E)

H; (E)

assumed cut off energy of epithermal spectrum

0.0711 eV; i.e. 2.81 Eq

neutron lethargy

In (Ey/E)

In (Ep/0E)

lethargy of neutrons having an energy of ¢j Ey

In(1/0})

total number of neutrons (of all energy)

produced in the moderator by fission per cm3 per sec
mactoscopic scattering cross section for ith puclide at energy E
total macroscopic scattering cross section at energy E

total macroscopic transport cross sec‘tion at energy E
normalized fission spectrum at energy E suggested by Cranberg et al. (1956)

0.45270 exp (-E/0.965) sinh (2.29E)!/2;

0
[ s(E}dE = 1
o

neutron density per unit energy at energy E
neutron flux per unit energy at energy E
vN(E)

collision density per unit energy at energy E derived from sources emitting 1
neutron per ¢cm? per sec

H(E) 25(E)/S

slowing down density, the number of neutrons per cm3 per sec that slow down
past a given energy E from sources emitting 1 neutron per em3 per sec

average gain of lethargy for neutrons colliding with the ith nuclide

1 - 2 InQ1/e;)
1-o;

probability of scattering by the ith nuclide

25i(E)/ Z5(E)



‘ . . -

F‘se = macroscopic cross section for transfer of neutrons from the epithermal to
the thermal group — see Appendix

De = diffusion coefficient for the epithermal group — see Appendix

L?S . = slowing down area defined as D /%2,

~

Ve = epithermal neutron velocity averaged over the neutron density spectrum for the
epithermal range — see Appendix

R = ratio of number of molecules of H,0 to the number of molecules of the

D0 ~ H,0 mixture
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APPENDIX

TWO~GROUP EPITHERMAL QUANTITIES

It is convenient to introduce Ne, ¢oe, X, and ¥ by means of the following definitions

rE
Ne = " NE)E
J oE
" Em Em
Pe = H(E)E = v(E)N(E)dE
.oE OE
1 Em
X = e x(E)N(E)dE
Ne
oE
- 1

El'l‘l
e x(E)$(EME ,
e )&

where x(E) is any parameter that depends on the neutron energy and N(E) is the neutron density
per unit energy at energy E. When x(E) = v, the neutron velocity,

Ve =

2~

Em
K v N(EME = ¢5/Ne
oE

We, an effective flux for the epithermal group, may be defined by the relation
We = YN,

-~
Then v, v, = G/ W

An effective cross section for transfer of neutrons from the epithermal to the thermal
group, 2.5, , may also be introduced through the relation

"
Ve Zser =3

which expresses the fact that all fission neutrons are eventually transferred to the thermal
group when absorption and leakage are absent,

§:*se = §/We = 8/(voNe)

Introducing F(u) the collision density per unit lethargy, the following series of identities
follow from basic definitions

_F(u)du = F(E)dE = ZS(E)QSE(E)dE . T (E) v;E)N(E)dE

[ e [ 1
Z:e = Eoi/Q I _Fw) du
L © IS E) El/?



APPENDIN (Continaed)

It is also possible to introduce a transfer cross section through the relation

(j:e 5 F = S

*
F-I: = Sge /(Te/vo)

In agreement with this equation the velocity ratio Ve/vo may also be given in terms of
the collision density per unit lethargy as

JO“ (u) f JO“ 1
~ F(u 1/2 F(u)

Ve /vy = ~ du /{E du } .
e/ Vo . XS(E) u 1 o ES(E) I€17? uJ

The diffusion coefficient for epithermal neutrons may be obtained by applying diffusion

theory to 1 em3 of the moderator. The leakage rate of epithermal neutrons from the element is
then given by

o

I

m

L

Ve {-DE)V $(E) } dE

€
ol

Em
- =VE D) ¢(eE

o]

where D(E) = {3 =, (E) }'—1 from the transport theory correction to diffusion theory., For conven—
ience Da(E) = vD(E) is also introduced.

The above expression for L. may then be written in two ways

De ©2
Le = “{,— v we )
0
and L. = -D VZ¢,
The effective diffusion coefficient is therefore given by
De = .D_e_
vO
u

oll
aw aderl xe ol

N *
which may be derived in the same way as the equation for 3¢

The second expression above for L, shows that the alternative definition of diffusien
coefficient satisfies a relation similar to that for &g |, namely

D = D&/ /vg)
Two~—group theory gives the slowing down area as
[‘?5 N Dc/ E;e
which may also be written
1-25 = D/EF .

T



Two-— group Epithermal Constants at 20.4°(C

TABLYE 1

R ;emf‘1 De cm L"; em?2 Eg_
vO
0 0.159 20.3 127 15.8
0.01 0.174 20.6 119 16.2
0.05 - 0.223 21.8 98 17.4
0.20 0.409 25,2 61.5 210
0.50 0.785 31.0 39.5 25.5
1.00 1,368 42.5 31.1 29.5
TABLE 2

Asymptotic Values of the Collision Density

R F(u)
0 1.98
0.01 1.90
0.05 1,70
0.2 1.38
0.5 1.18
1 1.08
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