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ABSTRACT

A method is presented for the solution of the multigroup collision probability
equations arising in reactor physics calculations. The method is a block relaxation
scheme, involving the direct solution by inversion of the equations for a single group,
and it has the conceptual advantage over the successive over-relaxation method that
problems without upscatter, which are of interest in fast reactor design, can be solved
without inner iteration.
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1. INTRODUCTION

A general purpose integral transport code is now being developed for the IBM 360/50H. The
code as envisaged will be modular, allowing input interfaces with data preparation codes,and output
interfaces withediting routines and with whole reactor design programs. At present the routines
written will perform multigroup lattice calculations, using isotropic collision probabilities for slab,
cylindrical and spherical geometries. Details of the calculation of collision probabilities have been
given previously (Doherty 1969} and the method of solution of the flux equations is presented here.

2, THE MULTIGROUP COLLISION PROBABILITY EQUATIONS

The multigroup collision probability equations, which may be tegarded as a statement of
neutron conservation in the reactor cell, can be written:

1 . .
V; Egl $gi = Sum V; [ng + 5 X, Sum Bg'; vEg i+ Sum 2ol Pa'il Pgii
! 8' g’
where
V; = volume of region i,
ET . . . .
gi = total cross section in group g, region i,
¢gi = scalar neutron flux in group g, region i,
Sgi = fixed source emission rate in group g, region i,
A = multiplication factor of the reactor cell,
Xy = proportion of fission neutrons born in group g,
vZpi = average number of neutrons per fission times the fission cross section in group g,
region i,
Eglgi = group g' to group g scattering cross section in region i,
and Py;; = probability that a neutron born uniformly in volume and 1sotrop1cally in direction in

group g, region j, will have its next collision in region i.

The left-hand side of each equation is the collision rate in group g, region i, and the right-hand

side is the production rate in region j multiplied by the p:obab1l1ty that neutrons produced in
region j will next collide in region i,

A derivation of this set of equations from the continuous space and energy integral
transport equation was given by Pull (1963} who also outlined a method of solution based on
successive over-relaxation (PIP) which was subsequently implemented by Clayton (1964). The
modular structure of the collision probability program allows a number of different methods for
solving the equations to be examined without too much difficulty. Rather than implement a PIP-
type code based on successive over-relaxation (SOR) it was felt that some effort should be
expended on an alternative scheme so that the computational efficiency of both methods could
be gauged. The block relaxation scheme discussed in detail in later sections was chosen because
of the success of such schemes in diffusion codesand because of their suitability for fast reactor
calculations., Comparisen between this method and SOR will be made when sufficient running
experience has been accumulated. The next section contains sufficient detail on the SOR method
to emphasize the differences between it and the method presented subsequently,

3. THE SOR SCHEME

To discuss methods of ‘solution it is necessary to write the multigroup equations in matrix
form, Following Pull (1963} we define a collision rate vector x for a system of k regions and
n-groups by the equations:
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X1 = Vi ZEgq oy
- .

xg = VoZia P
T

xp = Vi Zypdy

' T
Xl = Vi 221 ¢21 etc.

so that x is a vector of length kn whase first k elements are the group 1 collision rates,
second k elements are the group 2 collision rates, and so on,

We define also an emission rate vector y with similar partitioning by the equations:

y1= Sum ViZ,'11d,l+ 21
g

Yz = Suin VQ 28'12 ¢512+ Z 2
8

Yk < Stgu;ﬂ Vie 2o b+ 2k

It

Vierl = Sum Vy Zotyy ¢pli+zy,  etc,

g

The fission production term has been deliberately separated within the emission rate vector
and will be lumped together with the fixed source term to form a total source vector z, again with
similar partitioning, for which we shall give only the first two equations,

F .
zs = Vi[Sis+ -i—xa Sum $g'1 vl
8
zz = VoI[Si,+ L x,s ' zFI]
2 = 2 iz x 1111':195&21’82

&
With.these definitions the multigroup equations can be written

X

]

Py

y = Quiz ,

where P is the block diagonal matrix

~
P, 0 ——c—z ]
D - N———
0 0 ————c P,

and (Pp) ;. = Py;; .



The matrix Q is square and of the form

- —_
Dig Dyp ==—mm Diy
DgyDyy —wmm Dan
Dns Dppg ————— Dnn

N : -

where ‘each of the submatrices D;; is diagonal with the elements
T
(Dij)ﬂﬂ = Ejif /E]g Vﬂ
The matrix equations can then be written

I -P X 0

Q¢ I /iy z

and the matrix

I -P

-Q 1

possesses Property A which suggests SOR as a suitable method for solving the matrix equation”
iteratively. For a definition of Propetty A and its implications in the use of SOR the reader is
referred to Varga (1962), and to Pull (1963) and Clayton (1964) for details of the application of
SOR to this particular probiem.

In problems where fissionable materials are present in the system the vector z contains
in the term

1
X xgs‘;'? Pg'i “Eg'i

the eigenvalue A anda guess at the initial flux distribution. - The process of solution is divided
into an outer — inner iteration scheme. During an outer iteration the z vector remains unchanged
while a number of-inner iterations are performed to determine the x.and y vectors. When a specified
number of .inner iterations have been performed, a new estimate of the ‘eigenvalue of the system is.
made from overall neutron balance in the system, the new eigenvalue and the latest fluxes are useéd
to compute a new source vector z, and another outer iteration begins. If no fissionable material is
present, the vector z remains unaltered and the solution process consists only of inner .iterations .
until a specified convergence has been achieved.

4, AN ALTERNATIVE APPROACH FOR FIXED SOURCE PROBLEMS

Cons1der for a moment a fixed source problem. With the SOR scheme we start with an initial
guess x' of the collision rate vector x and use the equation

y' = Q;xr + z

to give us a starting value y' of the vector y.
The iteration scheme of SOR can be written

xn+1

wPy® + (1 — w) x"

n+l Wan+l

y = +wz+ (1 = w)y” '

n+l

where w is the over-relaxation parameter and x and x” are the n+1th and nth jterates respectively.



After one iteration has been completed

x* = wPy'+ {1l —w) x!

y: = wQx®+ wz 4 (1 - w)y!
All the values of x* were computed from the old vectors x* and y'. For this reason the SOR method
is unable to take advantage of a class of problems 1mportant in fast reactor design, namely purely
downscattermg problems, The d1fflculty experienced in applying the SOR approach to this problem
is analogous to the problem involved in using the Jacobi iterstion scheme for lower triangular
matrices. A simple 3 x 3 matrix will serve to illustrate the problem,

X1 = by

a21 X1 ¥x2 = be

agy Xxstagoxet xg = by .

Using the Jacobi scheme this becomes

x1n+l -~ by

n+l
Xo = by — ans x1

nt-l n n
b o] = bfa — Aag1 X1 =— agg X2 .

Starting from an initial guess x' three iterations must be performed before the correct answers are
obtained. However if instead the Gauss-Seidel scheme

n+l1

X3 = b1
x2n+1 = bo-—ans K111+1

n+l o+l n+l
X3 = bs —asy ¥x1 — ags %o

had been employed, then the correct result would have been obtained without iteration.
It is evident that a calculation scheme analogous to Gauss-Seidel can be designed for the

downscattering problem in particular, and such a scheme could provide a more efficient altematwe
to SOR on a wider range of problems._ If we return to.the ongmal equations:
C= ) . . TS 1 1. iy
Vi 2319’”31 = S‘j"“ Vi IS4+ ‘X‘ Xg Sum ¢l VEg‘J + Sum B ol byt 1 Py
8 -4

and consider the equations for a part.!culat group (dropping the index g} we obtain k equations of
the form:

T S
Vi ¢ = SL;m \f [Ti+23 9'5;]'13}1 ’

. 1 F
where T, = Sg+ X Xg S’-}m ¢g'j Vzg'i + S':ém Eg Ej 9551
4 g g

and 2. = X
Writing the cne-group equations in matrix form we get

Ax = By,



where x; = Vi ¢
vi = Vi T;
Bij = PByji
Ay = 21; 8y — zjs Bj; .

Applying the physical restrictions
T S
X > Z andSum Bj; < 1 ,
]

it can be seen that the transpose of A is an M-matrix (Varga 1962) with a positive inverse and hence,
in particular, that A™ exists and that all elements of A”! are positive.

We may therefore wiite C = A™" B and the one-group equations are reduced to the form
X = C;r\,

The matrix C is the same size as the original matrix of collision probabilities and to compute
this matrix requires the inversion of a k x k matrix, and the multiplication of two k x k matrices, In
exchange for this computational labour we have obtained, for the purely downscattering problem, the
partitioned equivalent of the Gauss-Seidel iteration scheme in the simple example. In the more general
problem where upscattering exists, the formulation above is consistent with a block relaxation scheme
which we shall now consider. '

We can partition the vector x into the set of n subvectors x; each of length k so that x;
contajns the spatial fluxes of group i.

The set of equations can then be written
Ajxj= By,
and for the non-fissionable case
yi = V5 + Sam Dj; x; ,

Jt
where Djj is a diagonal submatrix with elements

(Di; )00 = =i

Hence the matrix equations can be written:

AiX; = B;(VS;) + Sum B; Djjx;
j#l
= b; + Sum E;j x;
j#i

and ultimately as

F x = b ’
where F; = A;.

Fy = -Ej .
In the case of pure downscattering Fj; = 0 for j >i and the Gauss-Seidel solution is

correctly obtained from the first iteration. In the more general problem some of the lower energy

groups do have upscattering and the matrix F can then be written in the reducible (Varga 1962)
form:



—6—
Fia 0 t 31 by
Foy Fao X3 bo y
where x> in this partitioning contains all the groups to which upscattering is permitted. This
equation is solved in the order
Fig x1 = by
which requires no iteration since Fij is lower triangular and
Foo xo = ba— Fa1 x1
The matrix Fpsz is irreducible and the second equation requires an iterative scheme for its
solution, Since the Gauss-Seidel iteration matrix derived from Foo is no longer 2-cyclic, which i
is a prerequisite for Property A (Varga 1962), it will not be possible to determine efficiently an
over-relaxation parameter w for use in an SOR scheme on Fzo. From numerical experiments previously
reported (Doherty 1968) it seems likely that the Gauss-Seidel and the Aitken double-sweep iterative
schemes would be about equally efficient and that both would be capable of acceleration if sufficient:

storage could be made available.

5. EIGENVALUE PROBLEMS

We shall now return to a discussion of the eigenvalue problem posed by the presence of
fissionable material in the system. Neglecting for the present the possibility that a fixed source
is also present in the system the equations can be written:

1
Aixi = Szm B D Xj+'X"S|.{m B;iGy xj
11 ]

where Gjj is diagonal with elemeants
F
Gy = Xi vE;0

These equations can be written

Fx = ")l\- Hx ,
where Fii = Ay
Fi; = -—Ej as before
and Hj = B; Gy
Writing this equation as F™' Hx = A x, this eigenvalue problemr is the same one encountered in

neutron diffusion and transport codes. The matrix T = F™' H corresponds to the process of obtains
ing the new flux iterate from the old one. In the purely downscattering problem one pass through
the equations produces precisely the result

Kn+1 - T xn/ AR ’
where
M= TS
| x| being son;e suitable norm’ of x. The usual norm applied is based on the fission production

rate at each iteration since this gquantity is needed.to preserve neutron balance in the course of
the calculation,
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When upscattering problems are considered, the relation
Al Xn+1= T x"

is no longer exact because the vector T x" is not exactly evaluated by the inner iteration scheme
with the matrix Fo2. We nevertheless assume that the relation is exactly satisfied and proceed to
a simple method of accelerating the outer iteration which converges the eigenvalue and eigenvector
problem,

The matrix T can be shown to be non-negative and irreducible. Hence, from the Perron-
Frobenius results for non-negative matrices (Varga 1962), T has a largest real eigenvalue with an
associated real positive eigenvector — the persistent flux distribution that we seek to establish.
The non-negative property is due to the fact that the elements of H and F~* are non-negative, the
latter result being established with the aid of a Neumann expansion of F™! in block diagonal form.
The irreducibility of T can be asserted on physical arguments because fission neutrons are emitted
in the topmost energy groups and cause further fissions in all lower en ergy groups. It is not difficult
to establish irreducibility with mathematical rigour but the physical argument should suffice,

6. CONVERGENCE OF THE OUTER ITERATIONS

The outer iteration convergence problem is the same as that encountered in S, transpost
programs and diffusion programs, though the inner iteration schemes of these are markedly different.
Two methods of acceleration are of particular interest ~ the simple Aitken procedure of removing
the subdominant eigenvector, and the more elaborate Chebyshev extrapolation prodecure,

Let the eigenvalues of T bhe Ay, Ay .. ..
such that

1\.1‘> l)\g | }I)tgl .....
with corresponding eigenvectors x; satisfying

Txi = Ajx; .

Let y be a given starting vector and decompose y into the eigenvectors of T (which are assumed
to span the space)

y = a; xi{dummy suffix summation)
TY = aj {\'1 x;
T®y = a; A" x;

= Aj | +(——) a X
= a X X 4 | — 4+ 6 e a o
1 i A azg 2 ) 3 3

Since we have assumed Ay > | Aj | for isk 1, this simple powering procedure will ultimately yield
correct values of both Ay and x; .

The Aitken procedure has been outlined by Fox (1964). The assumption undecrlying the
procedure is that the subdominant eigenvalue is real and that the presence of the associated
eigenvector is the main hindrance to convergence.

n n i
Ty = ayg Av %1+ a2 Ag Xo+ . ...

n+l ntl o+l
T y=a1)l1 x1+a2)l2 Xo 4+ o 04w

The estimate of the eigenvalue obtained at this point, which we denote by u® is simply



This can be expanded to give

n ,\, (}tg . as X2
o= 1+ Y (A2 — A1) as X1
)tzn a2 Xo
n
pro— A E(XT) (Az— A1) a1 X1
A 1'l+1
n+l az X2
S E E( )(AQ—M) a1 X1
+1 n
—1\1 )tg v )\.1
'U.n had l\l - A-1 - pnul_kj_

From these equations A; can be determined, and then ‘A > . The eigenvector x» can also be
eliminated from the solution by noting that

1
Ty = Aa TNy = (A1 = A2 ) Ay x5,

A difficulty with the use of this acceleration procedure is to know when to apply it.
In deriving the procedure it has been assumed that A; is real and that by the t1me iteration n

is reached the eigenvectors higher than x» can be ignored in the expansion of T" y. The only
gross check that can be performed when applying the procedure is to check A2 < A1 If the
latter is not satisfied the assumptions used in the derivation of the procedure are violated and

the ‘acceleration’ is not applied. Such a procedure has been used in the WDSN program (Green
1967) and found to be an efficient acceleration device,

Chebyshev polynomial extrapolation has been employed in many large neutron diffusion

ptograms for converging the outer iterations. A full description of the method, which will be
summarised below, is given by Varga (1962).

. * . . .
it isassumed that at iteration n the estimate A of the eigenvalue is a close estimate
of the true eigenvalue Ay of T. This is usually a valid assumption as it is the flux eigenvector

rather than the eigenvalue which is varying most rapidly. Then the iterative procedure can be
written, with ¢ " = T%y,

(%)¢n Lyt
and (_};)r .l,b“ - gt

The matrix -T—* has spectral radius unity. If we consider polynomials p (x) for which

r
P:(l) = 1, then tlie matrix (F) corresponds to the polynomial p,(x) =
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If the eigenvalues )‘j of T are all real and non-negative
*x
0LAa€Agag oo v SAa €Ay = A ,

and if the corresponding eigenvectors xj span the n-dimensional space, then ¥™ can be expanded

¥ o= Cox
T
ph("‘p)iﬁm
Aj

Cix1+ Sum C; p <+ xj
i>1 A

l,b m+n

i

I

The sum on the right represents the error in the estimate of x5 so we minimize

max IPn (x) ] inthe range 0<x < -/\i
: 1

subject to the restriction Py (1) = 1

The solution of this problem is given explicitly in terms of Chebyshev polynomials

2x
(e 55 -1)

B = ey
(Cn‘x: -1)

where the Chebyshev polynomials satisfy

1
—

Co (x)

X

Ci(x)

Cor1 x) = 22 CL(x) — Cpy (x)

Defining o = =<2 | the dominance ratio of the matrix T, a new recurtence relation can be

1
derived for the Chebyshev extrapolated iterates ¢

v 2 ana (3™ - &™) - B €™
where _amyl = coshmp./ cosh (m+l)p

Bmtl = cosh (m-1) p / cosh {m+1) p

p = cosh™! (-—(2}-—1) |

To begin the new iteration scheme for ¢ put
é':o - ‘p [}
é‘l - é:o +

@' - £

2— @

. . . . . m-1 Coem o, :
The recurrence relation defined is a three-term one involving £ and £ in the.calcula-

tion of £™", The extra iterate which must be stored would be a severe penalty if we were to attempt

to apply this recurrence scheme to the flux vector, which has length equal to the number of groups

times number of regions, However the extrapolation is usually applied to the fission emission vector
which only has length equal to the number of regions. The storage requirements for the Aitken scheme

of acceleration are the same, and the Aitken procedure can yield an estimate of the eigenvalue Ao
and hence the dominance ratio of the Chebyshev extrapolation scheme. Thus the general outer

iteration procedure could be to perform unaccelerated outer iterations up to a specified number, then
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to perform an Aitken acceleration with the subsequent choice of Chebyshev extrapolation or con-
tinuing with Aitken accelerations at specified intervals.

The Chebyshev scheme relies on the assumption that the eigenvalues of the iteration maerix
are real and non-negative and normally distributed in the interval [0, A2]. It is usually possible
only to establish that the real parts of the eigenvalues are non-negative, though the success of the
scheme in diffusion codes suggests that the cigenvalues of the diffusion iteration matrix must have
small or zero complex parts.

7. CONCLUSION

The method of solution has been coded for the IBM 360/50H computer in the program ICPP,
which incorporates the collision probability methods described by Doherty (1969}, The range of
geometries which the program can handle will be extended to include clusters and some other two
dimensional configurations and it is hoped also to include an anisotropic scattering option.

Extensive running experience is still being accumulated but it appears that the flux solution
is quite satisfactory for thermal lattice calculations and very rapid for purely downscattering problems.

A typical 10-region, 15-group thermal calculation takes about 30 seconds to converge to a tolerance
of 10°* in the eigenvalue. An increase in the number of groups produces a roughly linear increase in
solution time but an increase in the number of space points produces a roughly cubic increase in
solution time, principally in the initial matrix inversion and premultiplication, so that the method is
unsuitable for few-group many-region problems. However the rate of convergence, which is to be
distinguished from the time for convergence, does not depend strongly on the number of regions in
the problem, as the SOR method appears to do (Askew et al. 1966).

On the problems so far attempted Chebyshev acceleration has been found unnecessary, few
problems even reaching the arbitrarily selected number of outer iterations (10) at which Aitken
acceleration is applied, It appears that the block relaxation scheme may be effecting a considerable
separation of the eigenvalues of the iteration matrix which is a distinct advantage in problems which
would otherwise converge slowly,
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