Depth Control of Ferromagnetism in FePt3 Films by Ion-Irradiation

G. L. Causer^{1,2}, D. L. Cortie¹, H. Zhu², M. Ionescu², G. J. Mankey³, and F. Klose²

¹Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong 2500, Australia

²Australian Nuclear Science and Technology Organisation, Lucas Heights 2234, Australia

³Department of Astronomy and Physics, University of Alabama, Tuscaloosa 35487, U.S.A.

The roadmap which outlines storage technology of magnetic hard disk drives predicts storage densities above 5 Tb/in² to be realised by isolated, individually addressable ferromagnetic (FM) bits of <10 nm in lateral dimension. In principle, artificially patterned structures of this type can be manufactured by x-ray, ion-and electron-beam lithography. However, there may be alternative solutions for obtaining these regular, nanoscale patterns of isolated FM dots. Our proposal is to locally transform a non-magnetic layer into a pattern of geometrically defined FM islands. Such a phase transition could be initiated by locally changing some physical parameter of the layer, such as its strain state or chemical composition leading to ferromagnetism.

Here, we present a chemical order (paramagnetic) to chemical disorder (FM) phase transition stimulated by He^+ irradiation of a FePt₃ thin film.

This talk will present preliminary work focussing on depth profiling the ion-beam induced FM order. By controlling the energy

(15 keV) and fluence $(2x10^{16} \text{ ions/cm}^2)$ of the ion-beam, we show ferromagnetism can be locally induced into the upper-half volume of the initially chemically well-ordered 280 nm FePt₃ film. Polarised neutron reflectometry was used to investigate the depth dependence of the layer averaged ion-beam induced FM moment within the thin film. Data analysis of the Kiessig fringes observed in the reflectivity post-irradiation suggest the FM / nonmagnetic interface is atomically sharp. The resulting bilayer structure was found to be homogenous in chemical composition but heterogeneous in both chemical and magnetic orders.