Spin-cycloid instability as the origin of weak ferromagnetism in the disordered perovskite Bi0.8La0.2Fe0.5Mn0.5O3

dc.contributor.authorBertinshaw, Jen_AU
dc.contributor.authorCortie, DLen_AU
dc.contributor.authorCheng, ZXen_AU
dc.contributor.authorAvdeev, Men_AU
dc.contributor.authorStuder, AJen_AU
dc.contributor.authorKlose, Fen_AU
dc.contributor.authorUlrich, Cen_AU
dc.contributor.authorWang, XLen_AU
dc.date.accessioned2016-06-17T06:13:09Zen_AU
dc.date.available2016-06-17T06:13:09Zen_AU
dc.date.issued2014-04-23en_AU
dc.date.statistics2016-06-16en_AU
dc.description.abstractPowder neutron diffraction and magnetometry studies have been conducted to investigate the crystallographic and magnetic structure of Bi0.8La0.2Fe0.5Mn0.5O3. The compound stabilizes in the Imma orthorhombic crystal symmetry in the measured temperature range of 5 to 380 K, with a transition to antiferromagnetic order at TN≈240 K. The spin cycloid present for BiFeO3 is found to be absent with 50% Mn3+ cation substitution, leading to G-type antiferromagnetic order with an enhanced out-of-plane canted ferromagnetic component, evident from measurable weak-ferromagnetic hysteresis. Structural modifications do not solely explain this behavior, indicating that modified electron exchange interactions must be taken into account. A classical spin simulation was developed to investigate the effect of random substitution in a disordered pseudocubic perovskite. The calculations took into account the nearest-neighbor, next-nearest-neighbor, and Dzyaloshinskii-Moriya interactions, along with the local spin anisotropy. Using this framework to extend the established Hamiltonian model for BiFeO3, we show that only certain types of perturbations at a magnetic defect and the surrounding molecular fields trigger a simultaneous collapse of cycloidal order and the emergence of the long-range weak-ferromagnetic component. By adopting values for the Mn molecular fields appropriate for REMnO3 (RE= rare earth), simulations of BiMn0.5Fe0.5O3 exhibit the key magnetic properties of our experimental observations.© 2014, American Physical Society.en_AU
dc.identifier.articlenumber144422en_AU
dc.identifier.citationBertinshaw, J., Cortie, D. L., Cheng, Z. X., Avdeev, M., Studer, A. J., Klose, F., Ulrich, C., & Wang, X. L. (2014). Spin-cycloid instability as the origin of weak ferromagnetism in the disordered perovskite Bi0.8La0.2Fe0.5Mn0.5O3. Physical Review B, 89(14), 144422. doi:10.1103/PhysRevB.89.144422en_AU
dc.identifier.govdoc6682en_AU
dc.identifier.issn1550-235Xen_AU
dc.identifier.issue14en_AU
dc.identifier.journaltitlePhysical Review Ben_AU
dc.identifier.urihttp://dx.doi.org/10.1103/PhysRevB.89.144422en_AU
dc.identifier.urihttp://apo.ansto.gov.au/dspace/handle/10238/7018en_AU
dc.identifier.volume89en_AU
dc.language.isoenen_AU
dc.publisherAmerican Physical Societyen_AU
dc.subjectNeutron diffractionen_AU
dc.subjectMagnetometersen_AU
dc.subjectCrystallographyen_AU
dc.subjectAntiferromagnetic materialsen_AU
dc.subjectPerovskiteen_AU
dc.subjectExperiment planningen_AU
dc.titleSpin-cycloid instability as the origin of weak ferromagnetism in the disordered perovskite Bi0.8La0.2Fe0.5Mn0.5O3en_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections