Electrochemistry and structure of the cobalt-free Li1+xMO2 (M = Li, Ni, Mn, Fe) composite cathode

dc.contributor.authorPang, WKen_AU
dc.contributor.authorKalluri, Sen_AU
dc.contributor.authorPeterson, VKen_AU
dc.contributor.authorDou, SXen_AU
dc.contributor.authorGuo, ZPen_AU
dc.date.accessioned2016-10-12T22:59:33Zen_AU
dc.date.available2016-10-12T22:59:33Zen_AU
dc.date.issued2014-07-01en_AU
dc.date.statistics2016-10-13en_AU
dc.description.abstractThe development of cathode materials with high capacity and cycle stability is essential to emerging electric-vehicle technologies, however, of serious environmental concern is that materials with these properties developed so far contain the toxic and expensive Co. We report here the Li-rich, Co-free Li1+xMO2 (M = Li, Ni, Mn, Fe) composite cathode material, prepared via a template-free, one-step wet-chemical method followed by conventional annealing in an oxygen atmosphere. The cathode has an unprecedented level of cation mixing, where the electrochemically-active component contains four elements at the transition-metal (3a) site and 20% Ni at the active Li site (3b). We find Ni2+/Ni3+/Ni4+ to be the active redox-center of the cathode with lithiation/delithiation occurring via a solid-solution reaction where the lattice responds approximately linearly with cycling, differing to that observed for iso-structural commercial cathodes with a lower level of cation mixing. The composite cathode has ∼75% active material and delivers an initial discharge-capacity of ∼103 mA h g−1 with a reasonable capacity retention of ∼84.4% after 100 cycles. Notably, the electrochemically-active component possesses a capacity of ∼139 mA h g−1, approaching that of the commercialized LiCoO2 and Li(Ni1/3Mn1/3Co1/3)O2 materials. Importantly, our operando neutron powder-diffraction results suggest excellent structural stability of this active component, which exhibits ∼80% less change in its stacking-axis than for LiCoO2 with approximately the same capacity, a characteristic that may be exploited to enhance significantly the capacity retention of this and similar materials.en_AU
dc.identifier.citationPang, W. K., Kalluri, S., Peterson, V. K., Dou, S. X., & Guo, Z. (2014). Electrochemistry and structure of the cobalt-free Li1+xMO2 (M = Li, Ni, Mn, Fe) composite cathode. [10.1039/C4CP02864C]. Physical Chemistry Chemical Physics, 16(46), 25377-25385. doi:10.1039/c4cp02864cen_AU
dc.identifier.govdoc7279en_AU
dc.identifier.issn1758-6224en_AU
dc.identifier.issue46en_AU
dc.identifier.journaltitlePhysical Chemistry Chemical Physicsen_AU
dc.identifier.pagination25377-25385en_AU
dc.identifier.urihttp://dx.doi.org/10.1039/c4cp02864cen_AU
dc.identifier.urihttp://apo.ansto.gov.au/dspace/handle/10238/7717en_AU
dc.identifier.volume16en_AU
dc.language.isoenen_AU
dc.publisherRoyal Society of Chemistryen_AU
dc.subjectCathodesen_AU
dc.subjectOxygenen_AU
dc.subjectElementsen_AU
dc.subjectMetalsen_AU
dc.subjectNeutron diffractionen_AU
dc.subjectEnvironmenten_AU
dc.titleElectrochemistry and structure of the cobalt-free Li1+xMO2 (M = Li, Ni, Mn, Fe) composite cathodeen_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections