Measurement of fracture toughness of hydrided Zircaloy - 4.

Loading...
Thumbnail Image
Date
2004
Journal Title
Journal ISSN
Volume Title
Publisher
The Institute of Materials Engineering Australasia Ltd.
Abstract
Zircaloy-4 is a zirconium alloy that will be used for construction of many of the core components in the replacement research reactor at Lucas Heights. The fracture toughness of the alloy and its radiation-induced reduction over the 40 year planned life of the reactor is an important mechanical property for this application. This study aims to simulate the radiation-induced reduction in fracture toughness by hydriding Zircaloy-4. A range of fracture toughnesses is required to calibrate the sub-size Charpy and small punch (SP) surveillance specimens that will be irradiated over the life of the reactor against standard J1C fracture toughness specimens. Pieces of Zircaloy-4 plate were hydrided in a vessel at a temperature of 520°C, at different pressures for either 10 or 22 hours. Final hydrogen concentrations between 25 wt% ppm and 380 wt% ppm hydrogen were obtained under gaseous atmosphere. The fracture toughness of the hydrided Zircaloy-4 was assessed using sub-size 2.5 mm-thick Charpy, three-point bend J1C and SP tests. The results were correlated to determine the relationship between the J-integral fracture toughness, Charpy impact energy and equivalent fracture strain (εqf) from the SP tests. It was found that as hydrogen concentration and hydride formation increased, the fracture toughness of the alloy generally decreased. The results show there to be a useful relationship between fracture toughness and εqf measured for the SP tests.
Description
Keywords
Zircaloy 4, Fracture properties, Zirconium, Mechanical properties, Hydrogen, Alloys
Citation
Callaghan, M. D., Yeung, W. Y., Ripley, M. I., & Carr, D. G. (2004). Measurement of fracture toughness of hydrided Zircaloy - 4. Paper presented to the International Conference and Exhibition on Adaptive Materials for a Modern Society, 1st - 3rd October 2003. UTS Haymarket Compus: Sydney, Australia. In Materials Forum 27, 68-73.