ANSTO Publications Online >
Journal Publications >
Journal Articles >

Please use this identifier to cite or link to this item: http://apo.ansto.gov.au/dspace/handle/10238/7143

Title: Biomass uptake and fire as controls on groundwater solute evolution on a southeast Australian granite: aboriginal land management hypothesis
Authors: Dean, JF
Webb, JA
Jacobsen, GE
Chisari, R
Dresel, PE
Keywords: CHEMICAL COMPOSITION
AUSTRALIA
WEATHERING
GEOCHEMISTRY
LANDSCAPING
RAIN
Issue Date: 4-Aug-2014
Publisher: Biogeosciences
Citation: Dean, J. F., Webb, J. A., Jacobsen, G. E., Chisari, R., & Dresel, P. E. (2014). Biomass uptake and fire as controls on groundwater solute evolution on a southeast Australian granite: aboriginal land management hypothesis. Bioeosciences, 11(15), 1726-4170. doi: http://dx.doi.org/10.5194/bg-11-4099-2014
Abstract: The chemical composition of groundwater and surface water is often considered to be dominated by water–rock interactions, particularly weathering; however, it has been increasingly realised that plant uptake can deplete groundwater and surface water of nutrient elements. Here we show, using geochemical mass balance techniques, that water–rock interactions do not control the hydrochemistry at our study site within a granite terrain in southwest Victoria, Australia. Instead the chemical species provided by rainfall are depleted by plant biomass uptake and exported, predominantly through fire. Regular landscape burning by Aboriginal land users is hypothesized to have caused the depletion of chemical species in groundwater for at least the past 20 000 yr by accelerating the export of elements that would otherwise have been stored within the local biomass. These findings are likely to be applicable to silicate terrains throughout southeast Australia, as well as similar lithological and climatic regions elsewhere in the globe, and contrast with studies of groundwater and surface water chemistry in higher rainfall areas of the Northern Hemisphere, where water–rock interactions are the dominant hydrochemical control.
URI: http://dx.doi.org/10.5194/bg-11-4099-2014
http://apo.ansto.gov.au/dspace/handle/10238/7143
ISSN: 1726-4170
Appears in Collections:Journal Articles

Files in This Item:

There are no files associated with this item.

Items in APO are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback